WO2000065611A1 - Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film - Google Patents
Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film Download PDFInfo
- Publication number
- WO2000065611A1 WO2000065611A1 PCT/JP2000/002559 JP0002559W WO0065611A1 WO 2000065611 A1 WO2000065611 A1 WO 2000065611A1 JP 0002559 W JP0002559 W JP 0002559W WO 0065611 A1 WO0065611 A1 WO 0065611A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- transparent conductive
- conductive film
- forming
- compound
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 60
- 150000003606 tin compounds Chemical class 0.000 claims abstract description 24
- 150000002472 indium compounds Chemical class 0.000 claims abstract description 15
- 239000007789 gas Substances 0.000 claims description 156
- 239000010408 film Substances 0.000 claims description 116
- 238000010884 ion-beam technique Methods 0.000 claims description 36
- 150000002500 ions Chemical class 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- 230000002950 deficient Effects 0.000 claims description 18
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 230000007547 defect Effects 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 229910000039 hydrogen halide Inorganic materials 0.000 claims description 4
- 239000012433 hydrogen halide Substances 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- -1 silicon ions Chemical class 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- CKHJYUSOUQDYEN-UHFFFAOYSA-N gallium(3+) Chemical compound [Ga+3] CKHJYUSOUQDYEN-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022466—Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/047—Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
- H01L21/28562—Selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76886—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
- H01L21/76892—Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
Definitions
- the present invention relates to a novel method for forming a transparent conductive film, a method for correcting a wiring using the same, and a transparent conductive film forming apparatus suitable for carrying out these methods.
- a transparent conductive film is often used as a material of a wiring (a wiring includes an electrode).
- a wiring includes an electrode.
- I T0 indium oxide
- I T0 in this application refers to ITO containing tin. This is because light transmittance and electrical conductivity are better when tin is included than when tin is not included.
- a transparent conductive film is formed on a substrate by a suitable method such as a sputtering method, and then this film is patterned into a shape corresponding to the wiring.
- the wiring made of the transparent conductive film may be formed by the lift-off method.
- the formed wiring is preferably a wiring having a predetermined shape without a defective portion, but may be a wiring partially having a defective portion. When there is a defective portion, it is preferable if a new transparent conductive film can be formed in the defective portion to correct the wiring defect.
- a mask made of a transparent conductive film that exposes only the defective portion of the wiring is placed on the sample, and a new transparent conductive film is formed on the sample through the mask by a suitable method such as sputtering. By forming, wiring Defects can be corrected.
- a first object of the present application is to provide a method capable of forming a transparent conductive film on a predetermined portion of a sample without using a mask.
- a second object of the present application is to provide a new repair method for repairing a wiring by selectively depositing a transparent conductive film on a defective portion of a wiring made of a transparent conductive film.
- a third object of the application is to provide an apparatus for forming a transparent conductive film, which facilitates the above-described methods. Disclosure of the invention
- a transparent conductive film of a sample is to be formed in a mixed gas atmosphere of a gas of an indium compound and a gas of a tin compound.
- the method is characterized in that a region is irradiated with an energy beam, and a transparent conductive film is deposited on the predetermined region.
- the transparent conductive film can be selectively deposited only on the energy beam irradiation region of the sample. Therefore, a novel method is realized in which a transparent conductive film can be deposited on a desired region of a sample without using a mask.
- the mixing ratio of the gas of the indium compound and the gas of the tin compound depends on the transparent conductive film to be formed. It may be determined experimentally or theoretically, taking into account the specifications. Although not limited thereto, the mixing ratio is preferably such that the weight of tin with respect to the weight of indium is 2% or more and 15% or less. If the mixing ratio is less than 2%, the conductivity of the transparent conductive film becomes low and practical use becomes difficult.) If it is more than 15%, the transmittance of the transparent conductive film to visible light decreases. This is because it cannot be used practically.
- an oxidizing gas may be used together with the gas of the indium compound and the gas of the tin compound.
- an oxidizing gas By using an oxidizing gas, the amount of oxygen contained in the transparent conductive film can be adjusted. It is preferable that the amount of oxygen can be adjusted in this manner because the conductivity and the transmittance of the transparent conductive film can be controlled.
- the amount of the oxidizing gas when it is used may be determined experimentally or theoretically.
- Examples of the energy beam that can be used include an ion beam, an electron beam, and a laser beam. Ion beams and electron beams are particularly preferred because they facilitate the deposition of transparent conductive films in smaller areas.
- any suitable ion type beam can be used.
- the ion species is gallium. Since gallium has a low melting point, it has advantages such as easy design of the ion source. Further, silicon ions are also preferable. Silicon ions are less likely to become impurities when the sample includes a semiconductor element using silicon.
- gas of an indium compound and tin compound are used. Ion rejection to reduce ion beam-derived ions from being injected into the transparent conductive film and sample along with the gas It is better to use gas.
- the ion-blocking gas one gas selected from a halogen gas, a hydrogen halide gas, and a gas containing a halogen, or a mixed gas of two or more gases is preferably used.
- a halogen gas a hydrogen halide gas
- a gas containing a halogen a mixed gas of two or more gases.
- the reason why this is better is as follows. For example, when a glass substrate is etched by a FIB apparatus using gallium as an ion source, it is known that a phenomenon occurs in which gallium is implanted into the glass substrate. From this fact, if a transparent conductive film is deposited using an ion beam, any of the various types of ions constituting the ion beam may be taken into the transparent conductive film or the sample.
- ions that may be taken into the transparent conductive film can be converted into compounds by reacting with halogen.
- halogen for example, gallion changes into a compound such as G a X 2 (X is a halogen atom).
- This compound is exhausted to the outside of the processing chamber by an exhaust device usually connected to the processing chamber to exhaust the processing chamber for depositing the transparent conductive film. Therefore, the risk that unnecessary ions are taken into the transparent conductive film can be reduced.
- halogen gas for example, one kind of gas selected from chlorine gas, iodine gas, bromine gas and fluorine gas, or a mixed gas of two or more kinds of gases is preferable.
- the hydrogen halide gas include a gas obtained by hydrogenating the above-described halogen gas.
- the supply amount of the ion-blocking gas is preferably an amount that can prevent or reduce the ion of the ion beam from being included in the deposited transparent conductive film, and a minimum necessary amount.
- the degree of vacuum in the processing chamber deteriorates (for example, if it becomes worse than 5 ⁇ 10'5 ⁇ rr), the ion beam itself cannot run.
- This supply amount can be specifically determined experimentally or theoretically.
- the transparent conductive film is formed on the defective portion of the wiring made of the transparent conductive film by the above-described method of forming the transparent conductive film. Is deposited to correct wiring defects.
- the transparent conductive film can be selectively deposited without mask on the defective portion of the wiring made of the transparent conductive film. Therefore, it is possible to easily correct a defect of the wiring made of the transparent conductive film.
- a transparent conductive film forming apparatus of the present invention can form a vacuum atmosphere, can run an energy beam, and can accommodate a sample on which a transparent conductive film is to be formed. And an energy beam supply unit that emits an energy beam, an exhaust unit that exhausts the processing chamber, a gas supply unit that supplies an alloy compound gas and a tin compound gas into the processing chamber, and exhausts the processing chamber. After that, a region where the transparent conductive film is to be formed of the sample is irradiated with an energy beam in a state where the gas of the indium compound and the gas of the tin compound are introduced into the processing chamber, so that the process of depositing the transparent conductive film on the predetermined region is performed. At least to execute, the control unit controls a processing chamber, an energy beam supply unit, an exhaust unit, and a gas supply unit. That.
- the method for forming a transparent conductive film and the method for correcting a wiring according to the present application can be easily implemented.
- FIG. 1 is a diagram illustrating a transparent conductive film forming apparatus (FIB apparatus) according to an embodiment.
- Fig. 2 shows the invention of a method for forming a transparent conductive film.
- FIG. 6 is a diagram for explaining an example applied to correction of a defective portion of a wiring to be performed.
- FIG. 1 shows an apparatus for explaining a transparent conductive film forming apparatus (in this case, a focused ion beam (FIB) apparatus) 10 suitable for carrying out each invention of a method of forming a transparent conductive film and a method of correcting a wiring. It is a schematic block diagram of.
- a transparent conductive film forming apparatus in this case, a focused ion beam (FIB) apparatus
- FIB focused ion beam
- the FIB apparatus 10 includes a processing chamber 11, an ion beam supply section 13, an exhaust section 15, a gas supply section 17, a sample stage 19, a secondary charged particle detector 21, an image forming apparatus 23 and The control unit 25 is provided.
- FIG. 1 shows a state where a sample 27, that is, a sample 27 on which a transparent conductive film is to be formed, for example, a substrate for a liquid crystal display device is placed on the sample stage 19.
- the processing chamber 11 is a chamber in which a vacuum atmosphere can be formed, an ion beam 29 can run, and a sample 27 can be taken in and out.
- the processing chamber 11 in this embodiment has a first chamber portion 11a for accommodating the sample stage 19 and the like, and a second chamber portion accommodating the ion beam supply section 13 and the like having a cylindrical shape. It consists of a room part 1 1b.
- the ion beam supply unit 13 supplies the sample 27 with an ion beam 29 in the form of a focused ion beam having a desired beam diameter.
- the ion beam 29 can be irradiated to any position of the sample 27, and The desired area can be scanned with the ion beam 29. Therefore, the ion beam supply unit 13 of this configuration example includes an ion source 13a, an extraction electrode 13b, a blanking electrode 13c, a scanning electrode 13d, and an objective lens 13e. As is well known, they are arranged in this order in the second chamber portion 11b.
- the ion source 13 a generates ions for irradiating the sample 27.
- the ion source 13 a is provided near the top of the second chamber portion 11 b of the processing chamber 11.
- the ion source 13a may be an ion source that generates one type of ion, or an ion source that can generate two or more types of ions and selectively extract any one of them. good.
- a gallium ion source is particularly preferable as an ion source because it is easy to design an ion source because gallium itself has a low melting point.
- a silicon ion source is preferable. This is because silicon ions are unlikely to become impurities in silicon semiconductors.
- the extraction electrode 13 b extracts the ions generated by the ion source 13 a to the sample 27 side.
- the blanking electrode 13 c is an electrode used to stop the irradiation of the sample 27 with the ion beam 29. More specifically, the ion beam 29 toward the sample 27 can be directed in a direction different from the direction toward the sample 27, whereby the irradiation of the ion beam 29 to the sample 27 can be performed. Stop.
- the scanning electrode 13d scans the sample 27 with the ion beam 29, and the c objective lens 13e that scans the sample 27 focuses the ion beam 29.
- the exhaust part 15 is for making the inside of the processing chamber 11 into a vacuum state of a desired degree of vacuum, and is constituted by any suitable vacuum pump.
- the exhaust portion 15 is connected to the first chamber portion 11a.
- the gas of the indium compound And a second gas supply unit 17b for supplying a tin compound gas. Further, in the case of this embodiment, it includes third gas supply means 17c for supplying an oxidizing gas, and fourth gas supply means 17d for supplying an ion-blocking gas. Further, a gas gun 17 e for spraying the gas from the first to fourth gas supply means onto a predetermined limited area of the sample 27 (for example, a wiring correction area of the sample) is included. Furthermore, it includes a flow controller 17 f installed on the output side of each of the first to fourth gas supply means for adjusting the flow rate of each gas.
- the gas gun 17 e is provided in the first chamber portion 11 a in the configuration example shown in FIG. 1 and is installed toward the sample 27.
- a gas gun may be provided for each of the first to fourth gas supply means.
- the first to fourth gas supply means 17 a to 17 d themselves have an arbitrary suitable configuration according to the type of gas used. That is, if the gas source to be used is a gas in the first place, the gas supply means includes, for example, a gas filled cylinder, a control valve for controlling the flow rate, a vacuum gauge, a buffer, etc. It can be. If the gas source to be used is liquid or solid and it is necessary to heat the gas source, the gas supply means should include means for heating the gas source and means for controlling the flow rate. A configuration (not shown) can be provided.
- the sample stage 19 is a stage on which the sample 27 can be placed and the sample 27 can be moved to any position in three directions of x, y and z, where the z direction is the ion source 1 3 Create a line segment connecting a to the sample stage 19
- the x and y directions are directions perpendicular to each other that constitute a plane perpendicular to the z direction. This xy plane is the mounting surface of sample 27.
- the secondary charged particle detector 21 When the sample 27 is irradiated with the ion beam 29, the secondary charged particle detector 21 receives the secondary electrons or secondary ions emitted from the sample 27, converts the intensity into current intensity, and converts the image into an image.
- Forming device eg, scanning ion microscope (SIM)
- SIM scanning ion microscope
- the image forming apparatus 23 forms an image corresponding to the secondary charged particle emission capability at each point of the sample 27 irradiated with the ion beam, and displays the image on the display unit 23a. Therefore, this FIB device 10 can be used as SIM.
- the control unit 25 includes a processing chamber 11, an ion beam supply unit 13, an exhaust unit 15, a gas supply unit 17, a sample stage 19, a secondary charged particle detector 21, and an image forming device 23. Control these so as to perform a predetermined operation.
- the control unit 25 can be constituted by a device including, for example, a computer, a sensor provided at an appropriate position, and an electronic circuit.
- the control unit 25 in this case, after evacuating the inside of the processing chamber 11 to a predetermined degree of vacuum, places at least the first and second gas supply means 17 a and 17 b in the processing chamber 11.
- the processing chamber 11, the ion beam supply unit 13, the exhaust unit 15, and the gas supply unit 17 are controlled.
- Such controls include, for example, the degree of vacuum, the ion beam intensity, the gas of the first to fourth gas supply means.
- the appropriate range such as the flow rate is experimentally checked beforehand, and the control unit 25 monitors these parameters with a vacuum gauge, a flow meter, or the like, and controls the operation according to a predetermined procedure.
- FIG. 2 shows an example of correcting a sample 27 having a wiring 27a made of a transparent conductive film and having a wiring 27a partially having a defective portion 27b.
- the perspective view is shown focusing on the sample stage 27 of the FIB device 10 and the vicinity of the gas gun 17 e.
- the sample 27 is placed on the sample stage 19 (FIG. 2 (A)). Then, the inside of the processing chamber 11 is exhausted by the exhaust unit 15 so as to have a predetermined degree of vacuum. Although not limited to this, it is preferable that the exhaust be performed in a high vacuum state of 10 ⁇ 5 Torr or more.
- a gas supply unit 17 supplies an indium compound gas and a tin compound gas, and if necessary, an oxidizing gas and / or an ion-blocking gas to a defective portion 27 b through a gas gun 17 e. Supply (spray) to the containing area.
- the defective portion 27b generated in the transparent conductive film cannot be found with an optical microscope because the wiring itself is a transparent conductive film. Therefore, it is preferable that the defective portion 27b itself is detected by, for example, an emission microscope. That is, heat is generated in the wiring by applying a predetermined voltage to the wiring to such an extent that a leakage current occurs in the defective portion. By observing this heat distribution with an emission microscope, it is better to detect the missing portion 27b.
- the emission microscope may be prepared separately from the FIB apparatus 10. In this case, the position coordinates of the missing part 27 b found by the emission microscope are It is necessary to transmit the information to 10 so that the FIB device 10 can grasp the position of the missing portion 27b. Further, an emission microscope may be provided in the FIB device 10 itself. This makes it easier to detect the missing part and correct it.
- a predetermined region including the defective portion 27b is scanned with the ion beam 29 in a state where the gas of the zinc compound and the gas of the tin compound are supplied (FIG. 2 (B)).
- a transparent conductive film (ITO) 27c is deposited on the predetermined area (FIG. 2 (C)).
- the film thickness of the transparent conductive film 27c can be controlled by, for example, the number of times of ion beam scanning. Therefore, the relationship between the number of times of ion beam scanning and the film thickness of the thin film is determined in advance by experiments or the like, and this data is stored in a memory (not shown) of the control unit 25, and based on this data. To control the film thickness.
- the composition of the transparent conductive film 27c can be controlled mainly by the mixture ratio of the gas of the zinc compound, the gas of the tin compound, the oxidizing gas and the ion-blocking gas, and the degree of vacuum in the processing chamber 11. I can do it. Therefore, it is preferable to obtain data on the mixing ratio and the degree of vacuum in advance, and control the composition of the transparent conductive film to a desired composition based on the data.
- any suitable gas can be used as the indium compound gas.
- a compound represented by the following formula (1), a compound represented by the following formula (2) and a compound represented by the following formula (3) are commercially available and easily available. It is presumed that a gas of one kind of compound selected from the above or a mixed gas of gases of two or more kinds of compounds is preferable as the gas of the indium compound used in the present invention.
- R in the formulas (1), (2) and (3) is an alkyl group, which may be the same or different in the formulas (1), (2) and (3). More specific examples of such Injiumu compounds, I n (C 5 H 7 0 2) 3: may be mentioned Bok Riasechiruase bets indium.
- any suitable gas can be used as the tin compound gas.
- a compound represented by the following formula (4), a compound represented by the following formula (5), and a compound represented by the following formula (6) are commercially available and easily available. It is presumed that a gas or a mixed gas of two or more compounds is preferable as the tin compound gas used in the present invention.
- R in the formulas (4) to (8) is an alkyl group, and may be the same, partially the same, or entirely different in the formulas (4) to (8).
- tin compound Sn (C4H90) 4: tetratertiarybutoxytin.
- oxidizing gas one kind of gas selected from oxygen, ozone and water vapor, or a mixed gas of two or more kinds of gases can be used. These gases are easy to obtain and manage.
- one kind of gas selected from a halogen gas, a hydrogen halide gas, and a gas containing a halogen, or a mixed gas of two or more kinds of gases can be used as the ion blocking gas.
- each component of the FIB device is not limited to the example shown in FIG. Further, the configuration of each part 11, 13, 17 is not limited to the above example.
- a transparent conductive film forming region of a sample is formed in a mixed gas atmosphere of a gas of an indium compound and a gas of a tin compound.
- the transparent conductive film (IT 0) is deposited on the predetermined area by irradiating an energy beam. Therefore, the transparent conductive film can be selectively deposited on a predetermined portion by maskless. Therefore, even when a defect (deletion) occurs in a wiring made of a transparent conductive film often used in a display device such as a liquid crystal display device, the defect can be corrected without a mask.
- the transparent conductive film forming apparatus of the present application since a predetermined processing chamber, a heat supply unit, an exhaust unit, a gas supply unit, and a control unit are provided, a method of forming a transparent conductive film and a method of correcting wiring are provided. To facilitate the implementation of each invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
A particular area (27b) of an object (27) is irradiated with an energy beam (29) in a gaseous atmosphere containing an indium compound and a tin compound, so that conducting transparent film (27c) is deposited on the irradiated area (27b).
Description
明 細 書 透明導電膜の形成方法および配線の修正方法および透明導電膜形成装置 技術分野 TECHNICAL FIELD Transparent conductive film forming method, wiring repair method, and transparent conductive film forming apparatus
この発明は、 透明導電膜を形成する新規な方法と、 これを用いた配線 の修正方法と、 これら方法の実施に好適な透明導電膜形成装置とに関す る 背景技術 The present invention relates to a novel method for forming a transparent conductive film, a method for correcting a wiring using the same, and a transparent conductive film forming apparatus suitable for carrying out these methods.
例えば液晶表示装置では、 透明導電膜が配線 (配線には電極も含む) 材料として多用されている。透明導電膜として、典型的には、 I T 0 (酸 化インジウム。 ) が用いられている。 なお、 この出願でいう I T 0とは、 錫を含む I T Oをいう。 錫を含む方が、 含まない場合に比べて、 光透過 率および電気伝導度共に良好になるからである。 For example, in a liquid crystal display device, a transparent conductive film is often used as a material of a wiring (a wiring includes an electrode). Typically, I T0 (indium oxide) is used as the transparent conductive film. It should be noted that I T0 in this application refers to ITO containing tin. This is because light transmittance and electrical conductivity are better when tin is included than when tin is not included.
表示装置を製造するに当たり、 スパッタ法等の好適な方法で、 基板上 に透明導電膜が形成され、 次に、 この膜が配線に応じた形状にパター二 ングされる。 勿論、 リフ 卜オフ法により、 透明導電膜からなる配線を形 成する場合もある。 In manufacturing a display device, a transparent conductive film is formed on a substrate by a suitable method such as a sputtering method, and then this film is patterned into a shape corresponding to the wiring. Needless to say, the wiring made of the transparent conductive film may be formed by the lift-off method.
形成した配線は、 欠損部分などの無い、 所定の形状の配線となるのが 好ましいが、 一部に欠損部分を有した配線になることもある。 欠損部分 がある場合、 この欠損部分に新たな透明導電膜を形成して、 配線の欠陥 を修正できれば、 好ましい。 The formed wiring is preferably a wiring having a predetermined shape without a defective portion, but may be a wiring partially having a defective portion. When there is a defective portion, it is preferable if a new transparent conductive film can be formed in the defective portion to correct the wiring defect.
配線バターンが大きい場合なら、 透明導電膜からなる配線の欠損部分 のみ露出するマスクを試料上に置いて、 該マスクを介して、 新たな透明 導電膜をスパッタ法などの好適な方法で試料上に形成することで、 配線
の欠陥を修正することができる。 If the wiring pattern is large, a mask made of a transparent conductive film that exposes only the defective portion of the wiring is placed on the sample, and a new transparent conductive film is formed on the sample through the mask by a suitable method such as sputtering. By forming, wiring Defects can be corrected.
しかし、 液晶表示装置をはじめとする近年の表示装置では、 配線はま すます微細化されているため、 マスクを用いる上記方法の採用は困難で ある。 かといつて、 マスクレスで、 透明導電膜からなる配線の欠損部分 に選択的に透明導電膜を堆積できる方法は、 本願出願人の知る限り、 現 在のところ、 実現されていない。 However, in recent display devices such as a liquid crystal display device, since the wiring is becoming increasingly finer, it is difficult to employ the above method using a mask. However, as far as the applicant of the present application is concerned, a method of masklessly depositing a transparent conductive film selectively on a defective portion of a wiring made of the transparent conductive film has not been realized.
この出願はこの様な点に鑑みなされたものであり、 従って、 この出願 の第 1 の目的は、 透明導電膜を試料の所定部分にマスクレスで形成出来 る方法を提供することにある。 The present application has been made in view of such a point, and accordingly, a first object of the present application is to provide a method capable of forming a transparent conductive film on a predetermined portion of a sample without using a mask.
また、 この出願の第 2の目的は透明導電膜からなる配線の欠損部分に 選択的に透明導電膜を堆積させて配線の修正をする新規な修正方法を提 供することにある。 A second object of the present application is to provide a new repair method for repairing a wiring by selectively depositing a transparent conductive film on a defective portion of a wiring made of a transparent conductive film.
また、 出願の第 3の目的は上述の各方法の実施を容易にする透明導電 膜の形成装置を提供することにある。 発明の開示 A third object of the application is to provide an apparatus for forming a transparent conductive film, which facilitates the above-described methods. Disclosure of the invention
この第 1 の目的の達成を図るため、 この発明の透明導電膜の形成方法 によれば、 ィンジゥム化合物のガスと錫化合物のガスとの混合ガス雰囲 気中で、 試料の透明導電膜形成予定領域にエネルギービームを照射して、 該予定領域に透明導電膜を堆積させることを特徴とする。 In order to achieve the first object, according to the method for forming a transparent conductive film of the present invention, a transparent conductive film of a sample is to be formed in a mixed gas atmosphere of a gas of an indium compound and a gas of a tin compound. The method is characterized in that a region is irradiated with an energy beam, and a transparent conductive film is deposited on the predetermined region.
この発明の透明導電膜の形成方法によれば、 試料のエネルギービーム 照射領域にのみ選択的に透明導電膜 ( I T O ) を堆積させることができ る。 従って、 試料の所望とする領域にマスクレスで透明導電膜を堆積で きる新規な方法が実現される。 According to the method for forming a transparent conductive film of the present invention, the transparent conductive film (ITO) can be selectively deposited only on the energy beam irradiation region of the sample. Therefore, a novel method is realized in which a transparent conductive film can be deposited on a desired region of a sample without using a mask.
なお、 この透明導電膜の形成方法の発明を実施するに当たり、 インジ ゥム化合物のガスと錫化合物のガスとの混合比は、 形成する透明導電膜
の仕様を考慮して、 実験的、 または理論的に決めれば良い。 これに限ら れないが、 前記混合比を、 イ ンジウムの重量に対する錫の重量が 2 %以 上で 1 5 %以下となるような混合比とするのが良い。 前記混合比が 2 % 未満であると、 透明導電膜の導電率が低くなり実用的な使用が困難にな り) 、 1 5 %より多〈なると透明導電膜の可視光に対する透過率が低く なり実用的に使用できな〈なるからである。 In carrying out the invention of the method for forming a transparent conductive film, the mixing ratio of the gas of the indium compound and the gas of the tin compound depends on the transparent conductive film to be formed. It may be determined experimentally or theoretically, taking into account the specifications. Although not limited thereto, the mixing ratio is preferably such that the weight of tin with respect to the weight of indium is 2% or more and 15% or less. If the mixing ratio is less than 2%, the conductivity of the transparent conductive film becomes low and practical use becomes difficult.) If it is more than 15%, the transmittance of the transparent conductive film to visible light decreases. This is because it cannot be used practically.
また、 この透明導電膜の形成方法の発明を実施するに当たり、 イ ンジ ゥム化合物のガスおよび錫化合物のガスと共に、 酸化性ガスを用いても 良い。 酸化性ガスを用いることにより、 透明導電膜に含ませる酸素の量 を調整することができる。 このように酸素の量を調整できると、 透明導 電膜の導電率と透過率を制御できるので好ましい。 なお、 酸化性ガスを 用いる場合のその量は、 実験的または理論的に決めれば良い。 In practicing the invention of the method for forming a transparent conductive film, an oxidizing gas may be used together with the gas of the indium compound and the gas of the tin compound. By using an oxidizing gas, the amount of oxygen contained in the transparent conductive film can be adjusted. It is preferable that the amount of oxygen can be adjusted in this manner because the conductivity and the transmittance of the transparent conductive film can be controlled. The amount of the oxidizing gas when it is used may be determined experimentally or theoretically.
また、 用い得るエネルギービームとして、 イオンビーム、 電子ビーム またはレーザビームを挙げることができる。 より微細な領域に透明導電 膜を堆積させ易いという点で、 イオンビームおよび電子ビームは特に好 ましい。 Examples of the energy beam that can be used include an ion beam, an electron beam, and a laser beam. Ion beams and electron beams are particularly preferred because they facilitate the deposition of transparent conductive films in smaller areas.
エネルギービームと して、 イオンビームを用いる場合、 任意好適なィ オン種のビームを用いることができる。 しかし、 好ましくは、 イオン種 をガリウムとしたイオンビームを用いるのが良い。 ガリウムは融点が低 い材料であるため、 イオン源の設計が容易となる等の利点がある。 また、 シリコンイオンも好ましい。 シリコンイオンは、 試料がシリコンを用い た半導体素子を含む場合、 該素子に対して不純物になりにくいからであ また、 エネルギービームとして、 イオンビームを用いる場合、 インジ ゥム化合物のガスおよび錫化合物のガスと共に、 イオンビームに由来の イオンが透明導電膜や試料に注入されるのを低減するためのイオン阻止
ガスを用いるのが良い。 When an ion beam is used as the energy beam, any suitable ion type beam can be used. However, it is preferable to use an ion beam in which the ion species is gallium. Since gallium has a low melting point, it has advantages such as easy design of the ion source. Further, silicon ions are also preferable. Silicon ions are less likely to become impurities when the sample includes a semiconductor element using silicon. When an ion beam is used as an energy beam, gas of an indium compound and tin compound are used. Ion rejection to reduce ion beam-derived ions from being injected into the transparent conductive film and sample along with the gas It is better to use gas.
イオン阻止ガスとして、 ハロゲンガス、 ハロゲン化水素ガスおよびハ ロゲンを含む物質のガスから選ばれる 1 種のガスまたは 2種以上のガス の混合ガスを用いるのが良い。 こう した方が良い理由は次の通りである。 例えば、 イオン源としてガリウムを用いた F I B装置でガラス基板を エッチングする場合、 このガラス基板中にガリゥムが注入される現象が 起こることが知られている。 この事実から推測すると、 イオンビームを 用いて透明導電膜を堆積させると、 イオンビームを構成するいずれの種 類のィ才ン種もこの透明導電膜や試料中に取り込まれるおそれがある。 透明導電膜中にイオンが取り込まれると、 該イオンによって該透明導電 膜の透過率は低下する。 そこで、 この発明の好適例の様に、 イオン阻止 ガスを併用すると、 透明導電膜中に取り込まれる恐れがあるイオンを、 ハロゲンと反応させて化合物に変えることができる。 例えばガリウムィ オンは G a X 2 ( Xはハロゲン原子) 等の化合物に変わる。 この化合物 は、 透明導電膜を堆積させる処理室を排気するため該処理室に通常接続 されている排気装置によって、 処理室外部に排気される。 そのため、 不 要なイオンが透明導電膜中に取り込まれる恐れを低減できる。 As the ion-blocking gas, one gas selected from a halogen gas, a hydrogen halide gas, and a gas containing a halogen, or a mixed gas of two or more gases is preferably used. The reason why this is better is as follows. For example, when a glass substrate is etched by a FIB apparatus using gallium as an ion source, it is known that a phenomenon occurs in which gallium is implanted into the glass substrate. From this fact, if a transparent conductive film is deposited using an ion beam, any of the various types of ions constituting the ion beam may be taken into the transparent conductive film or the sample. When ions are taken into the transparent conductive film, the transmittance of the transparent conductive film is reduced by the ions. Therefore, when an ion-blocking gas is used in combination as in a preferred embodiment of the present invention, ions that may be taken into the transparent conductive film can be converted into compounds by reacting with halogen. For example, gallion changes into a compound such as G a X 2 (X is a halogen atom). This compound is exhausted to the outside of the processing chamber by an exhaust device usually connected to the processing chamber to exhaust the processing chamber for depositing the transparent conductive film. Therefore, the risk that unnecessary ions are taken into the transparent conductive film can be reduced.
イオン阻止ガスとしてのハロゲンガスは、 例えば、 塩素ガス、 ヨウ素 ガス、 臭素ガスおよびフッ素ガスから選ばれる 1 種のガスまたは 2種以 上のガスの混合ガスが良い。 ハロゲン化水素ガスとして、 上記例示のハ ロゲンガスを水素化したガスを挙げることができる。 As the halogen gas as the ion-blocking gas, for example, one kind of gas selected from chlorine gas, iodine gas, bromine gas and fluorine gas, or a mixed gas of two or more kinds of gases is preferable. Examples of the hydrogen halide gas include a gas obtained by hydrogenating the above-described halogen gas.
イオン阻止ガスの供給量は、 堆積される透明導電膜にイオンビームの イオンが含まれるのを防止または低減できる量でかつ必要最小限の量が 良い。 ただし、 処理室内の真空度が悪くなると (例えば 5 X 1 0 '5 Τ ο r rより悪くなると) イオンビーム自体の走行ができなくなるので、 ィ ンジゥム化合物のガス、 錫化合物のガスおよびイオン阻止ガス全体での
処理室の真空度を考慮して、 イオン阻止ガスの供給量を決めるのが良い。 この供給量は、 具体的には、 実験的または理論的に決めることができる。 また、 この出願の第 2の目的の達成を図るため、 この発明の配線の修 正方法によれば、 上述の透明導電膜の形成方法により、 透明導電膜から なる配線の欠損部分に透明導電膜を堆積させて、 配線の欠陥を修正する ことを特徴とする。 The supply amount of the ion-blocking gas is preferably an amount that can prevent or reduce the ion of the ion beam from being included in the deposited transparent conductive film, and a minimum necessary amount. However, if the degree of vacuum in the processing chamber deteriorates (for example, if it becomes worse than 5 × 10'5 Τ rr), the ion beam itself cannot run. At It is advisable to determine the supply amount of the ion-blocking gas in consideration of the degree of vacuum in the processing chamber. This supply amount can be specifically determined experimentally or theoretically. In addition, in order to achieve the second object of the present application, according to the wiring correction method of the present invention, the transparent conductive film is formed on the defective portion of the wiring made of the transparent conductive film by the above-described method of forming the transparent conductive film. Is deposited to correct wiring defects.
この配線の修正方法の発明によれば、 透明導電膜からなる配線の欠損 部分に透明導電膜をマスクレスで選択的に堆積させることができる。 そ のため、 透明導電膜からなる配線の欠陥修正を容易に行うことができる。 According to the invention of the wiring repair method, the transparent conductive film can be selectively deposited without mask on the defective portion of the wiring made of the transparent conductive film. Therefore, it is possible to easily correct a defect of the wiring made of the transparent conductive film.
また、 この出願の第 3の目的の達成を図るため、 この発明の透明導電 膜形成装置は、 真空雰囲気を形成でき、 エネルギービームが走行できお よび透明導電膜を形成したい試料を収容できる処理室と、 エネルギ一ビ ームを発するエネルギービーム供給部と、 処理室内を排気する排気部と、 処理室内に、 ィンジゥム化合物のガスおよび錫化合物のガスを供給する ガス供給部と、 処理室内を排気した後、 処理室内にイ ンジウム化合物の ガスおよび錫化合物のガスを導入した状態で試料の透明導電膜形成予定 領域にエネルギービームを照射することにより、 前記予定領域に透明導 電膜を堆積させる処理を少なくとも実行するように、 処理室、 エネルギ 一ビーム供給部、 排気部およびガス供給部を制御する制御部とを含む構 成となっている。 In order to achieve the third object of the present application, a transparent conductive film forming apparatus of the present invention can form a vacuum atmosphere, can run an energy beam, and can accommodate a sample on which a transparent conductive film is to be formed. And an energy beam supply unit that emits an energy beam, an exhaust unit that exhausts the processing chamber, a gas supply unit that supplies an alloy compound gas and a tin compound gas into the processing chamber, and exhausts the processing chamber. After that, a region where the transparent conductive film is to be formed of the sample is irradiated with an energy beam in a state where the gas of the indium compound and the gas of the tin compound are introduced into the processing chamber, so that the process of depositing the transparent conductive film on the predetermined region is performed. At least to execute, the control unit controls a processing chamber, an energy beam supply unit, an exhaust unit, and a gas supply unit. That.
この透明導電膜形成装置の発明によれば、 この出願の透明導電膜の形 成方法および配線の修正方法をそれぞれ容易に実施することができる。 図面の簡単な説明 According to the invention of the apparatus for forming a transparent conductive film, the method for forming a transparent conductive film and the method for correcting a wiring according to the present application can be easily implemented. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施の形態の透明導電膜形成装置 ( F I B装置) を説明する 図である。 図 2は、 透明導電膜の形成方法の発明を、 透明導電膜からな
る配線の欠損部分の修正に適用する例を説明する図である。 発明を実施するための最良の形態 FIG. 1 is a diagram illustrating a transparent conductive film forming apparatus (FIB apparatus) according to an embodiment. Fig. 2 shows the invention of a method for forming a transparent conductive film. FIG. 6 is a diagram for explaining an example applied to correction of a defective portion of a wiring to be performed. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照してこの出願の透明導電膜の形成方法、 配線の修正 方法および透明導電膜形成装置の各発明の実施の形態について説明する。 なお、 以下の説明に用いる各図はこれら発明を理解出来る程度に各構成 成分を概略的に示してあるにすぎない。 また、 各図において同様な構成 成分については同一の符号を付すと共にその重複する説明を省略するこ ともある。 Hereinafter, embodiments of the invention of a method for forming a transparent conductive film, a method for correcting wiring, and a device for forming a transparent conductive film of the present application will be described with reference to the drawings. Each figure used in the following description merely schematically shows each component so that the present invention can be understood. Also, in each of the drawings, the same components are denoted by the same reference numerals, and redundant description thereof may be omitted.
図 1 は、 透明導電膜の形成方法および配線の修正方法の各発明の実施 に好適な透明導電膜形成装置(この例の場合集束イオンビーム( F I B ) 装置) 1 0を説明するための、 装置の概略的な構成図である。 FIG. 1 shows an apparatus for explaining a transparent conductive film forming apparatus (in this case, a focused ion beam (FIB) apparatus) 10 suitable for carrying out each invention of a method of forming a transparent conductive film and a method of correcting a wiring. It is a schematic block diagram of.
この F I B装置 1 0は、 処理室 1 1 、 イオンビーム供給部 1 3、 排気 部 1 5、 ガス供給部 1 7、 試料ステージ 1 9、 2次荷電粒子検出器 2 1 、 画像形成装置 2 3および制御部 2 5を具える。 The FIB apparatus 10 includes a processing chamber 11, an ion beam supply section 13, an exhaust section 15, a gas supply section 17, a sample stage 19, a secondary charged particle detector 21, an image forming apparatus 23 and The control unit 25 is provided.
なお、 図 1 では、 試料ステージ 1 9上に試料 2 7、 すなわち透明導電 膜を形成したい試料 2 7例えば液晶表示装置用の基板を置いた状態を示 し こめ FIG. 1 shows a state where a sample 27, that is, a sample 27 on which a transparent conductive film is to be formed, for example, a substrate for a liquid crystal display device is placed on the sample stage 19.
処理室 1 1 は、 その内部に真空雰囲気を形成できると共に、 イオンビ ーム 2 9が走行でき、 然も、 試料 2 7を出し入れできる室である。 この 実施の形態の場合の処理室 1 1 は、 試料ステージ 1 9等を収容する第 1 室部分 1 1 aと、 イオンビーム供給部 1 3等を収容していて筒状の形状 を持つ第 2室部分 1 1 bとで構成してある。 The processing chamber 11 is a chamber in which a vacuum atmosphere can be formed, an ion beam 29 can run, and a sample 27 can be taken in and out. The processing chamber 11 in this embodiment has a first chamber portion 11a for accommodating the sample stage 19 and the like, and a second chamber portion accommodating the ion beam supply section 13 and the like having a cylindrical shape. It consists of a room part 1 1b.
イオンビーム供給部 1 3は、 試料 2 7に対し、 イオンビーム 2 9を、 所望のビーム径をもつ集束イオンビームの状態で供給する。 然も、 試料 2 7の任意の位置にイオンビーム 2 9を照射でき、 かつ、 試料 2 7の任
意の領域に対しイオンビーム 2 9を走査できる。 そのため、 この構成例 のイオンビーム供給部 1 3は、 イオン源 1 3 a、 引き出し電極 1 3 b、 ブランキング電極 1 3 c、 走査電極 1 3 dおよび対物レンズ 1 3 eを具 えていて、 周知の通り、 この順で第 2室部分 1 1 b内に配置されている。 イオン源 1 3 aは、 試料 2 7に照射するためのイオンを発生する。 こ のイオン源 1 3 aは、 処理室 1 1 の第 2室部分 1 1 bの頂部付近に設け てある。 このイオン源 1 3 aは、 1 種類のイオンを発生するイオン源で も良く、 2種類以上のイオンを発生してそれらのうちの任意の 1 種を選 択的に取り出すことができるイオン源でも良い。 ガリウムィオン源は、 ガリウム自体が融点が低い等の理由からイオン源を設計し易いため、 ィ オン源として特に好ましい。 また、 シリコンイオン源も好ましい。 なぜ なら、 シリコンイオンは、 シリコン半導体に対して不純物となりにくい からである。 The ion beam supply unit 13 supplies the sample 27 with an ion beam 29 in the form of a focused ion beam having a desired beam diameter. Of course, the ion beam 29 can be irradiated to any position of the sample 27, and The desired area can be scanned with the ion beam 29. Therefore, the ion beam supply unit 13 of this configuration example includes an ion source 13a, an extraction electrode 13b, a blanking electrode 13c, a scanning electrode 13d, and an objective lens 13e. As is well known, they are arranged in this order in the second chamber portion 11b. The ion source 13 a generates ions for irradiating the sample 27. The ion source 13 a is provided near the top of the second chamber portion 11 b of the processing chamber 11. The ion source 13a may be an ion source that generates one type of ion, or an ion source that can generate two or more types of ions and selectively extract any one of them. good. A gallium ion source is particularly preferable as an ion source because it is easy to design an ion source because gallium itself has a low melting point. Also, a silicon ion source is preferable. This is because silicon ions are unlikely to become impurities in silicon semiconductors.
引き出し電極 1 3 bは、 イオン源 1 3 aで発生されたイオンを試料 2 7の側に引き出す。 The extraction electrode 13 b extracts the ions generated by the ion source 13 a to the sample 27 side.
ブランキング電極 1 3 cは、 試料 2 7へのイオンビーム 2 9の照射を 停止したいときに使用される電極である。 具体的には、 試料 2 7に向か うイオンビ一ム 2 9を試料 2 7に向かう方向とは異なる方向に向けるこ とができ、 これにより、 試料 2 7へのイオンビーム 2 9の照射を停止す る。 The blanking electrode 13 c is an electrode used to stop the irradiation of the sample 27 with the ion beam 29. More specifically, the ion beam 29 toward the sample 27 can be directed in a direction different from the direction toward the sample 27, whereby the irradiation of the ion beam 29 to the sample 27 can be performed. Stop.
走査電極 1 3 dは、 イオンビーム 2 9を、 試料 2 7上を、 走査させる c 対物レンズ 1 3 eは、 イオンビーム 2 9を集束させる。 The scanning electrode 13d scans the sample 27 with the ion beam 29, and the c objective lens 13e that scans the sample 27 focuses the ion beam 29.
また、 排気部 1 5は、 処理室 1 1 内を所望の真空度の真空状態にする もので、 任意好適な真空ポンプで構成してある。 図 1 に示す構成例では この排気部 1 5を第 1 室部分 1 1 aに接続してある。 In addition, the exhaust part 15 is for making the inside of the processing chamber 11 into a vacuum state of a desired degree of vacuum, and is constituted by any suitable vacuum pump. In the configuration example shown in FIG. 1, the exhaust portion 15 is connected to the first chamber portion 11a.
ガス供給部 1 7 ]よ、 この実施の形態の場合、 イ ンジウム化合物のガス
を供給する第 1 のガス供給手段 1 7 aと、 錫化合物のガスを供給する第 2のガス供給手段 1 7 bとを含む。 さらに、 この実施の形態の場合、 酸 化性ガスを供給する第 3のガス供給手段 1 7 cと、 イオン阻止ガスを供 給する第 4のガス供給手段 1 7 dとを含む。 さらに、 これら第 1〜第 4 のガス供給手段からのガスを、 試料 2 7の所定の限られた領域 (例えば 試料の配線修正領域) に吹き付けるためのガス銃 1 7 eを含む。 さらに、 第 1〜第 4のガス供給手段の出力側にそれぞれ設置され、 各ガス流量を 調整するための流量コントローラ 1 7 f を、 含む。 According to the gas supply unit 17], in the case of this embodiment, the gas of the indium compound And a second gas supply unit 17b for supplying a tin compound gas. Further, in the case of this embodiment, it includes third gas supply means 17c for supplying an oxidizing gas, and fourth gas supply means 17d for supplying an ion-blocking gas. Further, a gas gun 17 e for spraying the gas from the first to fourth gas supply means onto a predetermined limited area of the sample 27 (for example, a wiring correction area of the sample) is included. Furthermore, it includes a flow controller 17 f installed on the output side of each of the first to fourth gas supply means for adjusting the flow rate of each gas.
なお、 ガス銃 1 7 eは、 図 1 の構成例では、 第 1室部分 1 1 aに設け られていて、 試料 2 7に向けて設置されている。 ただし、 図 1 の構成例 ではガス銃が 1 つの例を示しているが、 この例に限られない。 例えば、 第 1〜第 4のガス供給手段毎にガス銃を設けても良い。 The gas gun 17 e is provided in the first chamber portion 11 a in the configuration example shown in FIG. 1 and is installed toward the sample 27. However, in the configuration example of Fig. 1, only one gas gun is shown, but the invention is not limited to this example. For example, a gas gun may be provided for each of the first to fourth gas supply means.
これら第 1〜第 4のガス供給手段 1 7 a〜 1 7 d自体は、 用いるガス の種類に応じた任意好適な構成とする。 すなわち、 用いるガスのガス源 がそもそも気体であるなら、 ガス供給手段は、 例えば、 図示は省略する が、 ガスを充填したボンべ、 流量を制御するコントロールバルブ、 真空 ゲージ、 バッファなどを具えた構成とすることができる。 また、 用いる ガスのガス源がそもそも液体または固体であって然もこのガス源を加熱 する必要がある場合は、 ガス供給手段は、 ガス源を加熱する手段や、 流 量をコントロールする手段などを具えた構成 (図示せず) とすることが できる。 The first to fourth gas supply means 17 a to 17 d themselves have an arbitrary suitable configuration according to the type of gas used. That is, if the gas source to be used is a gas in the first place, the gas supply means includes, for example, a gas filled cylinder, a control valve for controlling the flow rate, a vacuum gauge, a buffer, etc. It can be. If the gas source to be used is liquid or solid and it is necessary to heat the gas source, the gas supply means should include means for heating the gas source and means for controlling the flow rate. A configuration (not shown) can be provided.
なお、 第 1 〜第 4のガス供給手段 1 7 a〜 1 7 dそれぞれで用いるガ スについては、 後述する。 The gas used in each of the first to fourth gas supply means 17a to 17d will be described later.
試料ステージ 1 9は、 試料 2 7を載せると共に、 試料 2 7を x、 yお よび zの三方向上の任意の位置に移動することができるステージである, ここで、 z方向とはイオン源 1 3 aと試料ステージ 1 9とを結ぶ線分に
沿う方向であり、 x、 y方向とは、 この z方向に垂直な平面を構成する 互いに直交する方向である。 この X y平面が試料 2 7の搭載面となって いる。 The sample stage 19 is a stage on which the sample 27 can be placed and the sample 27 can be moved to any position in three directions of x, y and z, where the z direction is the ion source 1 3 Create a line segment connecting a to the sample stage 19 The x and y directions are directions perpendicular to each other that constitute a plane perpendicular to the z direction. This xy plane is the mounting surface of sample 27.
2次荷電粒子検出器 2 1 は、 試料 2 7にイオンビーム 2 9を照射した とき、 試料 2 7から出る 2次電子または 2次イオンを受けて、 その強度 を電流の強弱に変換して画像形成装置 (例えば走査型イオン顕微鏡 ( S I M ) ) 2 3に出力する。 この 2次荷電粒子検出器 2 1 は、 第 1室部分 1 1 a内の、 かつ、 2次荷電粒子を受けるのに最適な位置に、 設けてあ る o When the sample 27 is irradiated with the ion beam 29, the secondary charged particle detector 21 receives the secondary electrons or secondary ions emitted from the sample 27, converts the intensity into current intensity, and converts the image into an image. Forming device (eg, scanning ion microscope (SIM)) 23 The secondary charged particle detector 21 is provided in the first chamber portion 11a at an optimal position for receiving the secondary charged particles o
画像形成装置 2 3は、 試料 2 7のイオンビームが照射された各点での 2次荷電粒子放出能に応じた像を形成して表示部 2 3 aに表示する。 従 つて、 この F I B装置 1 0を S I Mとして利用できる。 The image forming apparatus 23 forms an image corresponding to the secondary charged particle emission capability at each point of the sample 27 irradiated with the ion beam, and displays the image on the display unit 23a. Therefore, this FIB device 10 can be used as SIM.
これら 2次荷電粒子検出器 2 1 および画像形成装置 2 3自体の構造は 周知であるので、 ここではその詳細な説明を省略する。 Since the structures of the secondary charged particle detector 21 and the image forming device 23 themselves are well known, detailed description thereof is omitted here.
制御部 2 5は、 処理室 1 1 、 イオンビーム供給部 1 3、 排気部 1 5、 ガス供給部 1 7、 試料ステージ 1 9、 2次荷電粒子検出器 2 1 および画 像形成装置 2 3それぞれが、 所定の動作をするように、 これらを制御す る。 この制御部 2 5は、 例えばコンピュータと適正位置に設けたセンサ と電子回路とを含む装置で構成することができる。 特に、 この場合の制 御部 2 5は、 処理室 1 1 内を所定真空度に排気した後、 処理室 1 1 内に、 少なくとも第 1 および第 2のガス供給手段 1 7 a、 1 7 bからのガスを 導入した状態で、 試料 2 7の透明導電膜形成予定領域にイオンビーム 2 9を照射することにより、 この領域に透明導電膜 ( I T O ) を堆積させ る処理を少なくとも実行するように、 処理室 1 1 、 イオンビーム供給部 1 3、 排気部 1 5およびガス供給部 1 7を制御する。 このような制御は、 例えば、 真空度、 イオンビーム強度、 第 1 〜第 4のガス供給手段のガス
流量などの適正範囲を予め例えば実験的に調べておいて、 制御部 2 5が これらパラメータを真空計や流量計等で監視し、 かつ、 予め定めた手順 に従う動作を制御することで実現できる。 The control unit 25 includes a processing chamber 11, an ion beam supply unit 13, an exhaust unit 15, a gas supply unit 17, a sample stage 19, a secondary charged particle detector 21, and an image forming device 23. Control these so as to perform a predetermined operation. The control unit 25 can be constituted by a device including, for example, a computer, a sensor provided at an appropriate position, and an electronic circuit. In particular, the control unit 25 in this case, after evacuating the inside of the processing chamber 11 to a predetermined degree of vacuum, places at least the first and second gas supply means 17 a and 17 b in the processing chamber 11. By irradiating the region where the transparent conductive film is to be formed of the sample 27 with the ion beam 29 while introducing the gas from the sample, at least the process of depositing the transparent conductive film (ITO) on this region is performed. The processing chamber 11, the ion beam supply unit 13, the exhaust unit 15, and the gas supply unit 17 are controlled. Such controls include, for example, the degree of vacuum, the ion beam intensity, the gas of the first to fourth gas supply means. For example, the appropriate range such as the flow rate is experimentally checked beforehand, and the control unit 25 monitors these parameters with a vacuum gauge, a flow meter, or the like, and controls the operation according to a predetermined procedure.
次に、 この発明の透明導電膜の形成方法を、 透明導電膜からなる配線 の修正方法に適用した例を、説明する。 この説明を図 1 および図 2 ( A ) 〜 (C ) を参照して行う。 Next, an example in which the method for forming a transparent conductive film of the present invention is applied to a method for repairing a wiring made of a transparent conductive film will be described. This description will be made with reference to FIGS. 1 and 2 (A) to (C).
なお、 図 2は、 透明導電膜からなる配線 2 7 aであって一部に欠損部 分 2 7 bが生じている配線 2 7 aを有した試料 2 7を修正する例を示し てある。 ただし、 F I B装置 1 0の試料ステージ 2 7、 ガス銃 1 7 e付 近に着目して示した斜視図によって示してある。 FIG. 2 shows an example of correcting a sample 27 having a wiring 27a made of a transparent conductive film and having a wiring 27a partially having a defective portion 27b. However, the perspective view is shown focusing on the sample stage 27 of the FIB device 10 and the vicinity of the gas gun 17 e.
先ず、 試料ステージ 1 9上に、 上記試料 2 7を置く (図 2 ( A ) ) 。 そして、 処理室 1 1 内を所定の真空度になるように排気部 1 5により排 気する。 これに限られないが、 好まし〈は、 1 0 ·5 T o r r以上の高真 空状態になるよう排気する。 First, the sample 27 is placed on the sample stage 19 (FIG. 2 (A)). Then, the inside of the processing chamber 11 is exhausted by the exhaust unit 15 so as to have a predetermined degree of vacuum. Although not limited to this, it is preferable that the exhaust be performed in a high vacuum state of 10 真5 Torr or more.
次に、 ガス供給部 1 7から、 インジウム化合物のガスおよび錫化合物 のガス、 さらに、 必要に応じ、 酸化性ガス及び又はイオン阻止ガスを、 ガス銃 1 7 eを介して欠損部分 2 7 bを含む領域に供給する (吹き付け る) 。 Next, a gas supply unit 17 supplies an indium compound gas and a tin compound gas, and if necessary, an oxidizing gas and / or an ion-blocking gas to a defective portion 27 b through a gas gun 17 e. Supply (spray) to the containing area.
なお、 透明導電膜に生じている欠損部分 2 7 bは、 配線自体が透明導 電膜であるため、 光学顕微鏡では発見できない。 そこで、 欠損部分 2 7 b自体は、 例えばエミッション顕微鏡により検出するのが好適である。 すなわち、 欠損部分にリーク電流が生じる程度に、 配線に所定電圧を印 加することで、 配線に熱を発生させる。 この熱の分布をェミッション顕 微鏡で観察することで、 欠損部分 2 7 bを検出するのが良い。 エミッシ ヨン顕微鏡は、 F I B装置 1 0とは別に用意しても良い。 その場合、 ェ ミツション顕微鏡で発見した欠損部分 2 7 bの位置座標を、 F I B装置
1 0に伝達して、 F I B装置 1 0が欠損部分 2 7 bの位置を把握できる ようにする必要がある。 また、 F I B装置 1 0自体にェミッション顕微 鏡を設けても良い。 こう した方が、 欠損部分の検出およびその修正作業 を 亍ぃ易い。 Note that the defective portion 27b generated in the transparent conductive film cannot be found with an optical microscope because the wiring itself is a transparent conductive film. Therefore, it is preferable that the defective portion 27b itself is detected by, for example, an emission microscope. That is, heat is generated in the wiring by applying a predetermined voltage to the wiring to such an extent that a leakage current occurs in the defective portion. By observing this heat distribution with an emission microscope, it is better to detect the missing portion 27b. The emission microscope may be prepared separately from the FIB apparatus 10. In this case, the position coordinates of the missing part 27 b found by the emission microscope are It is necessary to transmit the information to 10 so that the FIB device 10 can grasp the position of the missing portion 27b. Further, an emission microscope may be provided in the FIB device 10 itself. This makes it easier to detect the missing part and correct it.
上述の様にィンジゥム化合物のガスおよび錫化合物のガス等を供給し た状態で、 欠損部分 2 7 bを含む所定領域を、 イオンビーム 2 9で走査 する (図 2 ( B ) ) 。 この走査の結果、 この所定領域に、 透明導電膜 ( I T O ) 2 7 cが堆積する (図 2 ( C ) ) 。 この透明導電膜 2 7 cの膜厚 は、 たとえばイオンビ一ムの走査回数などにより管理することができる。 従って、 イオンビームの走査回数と薄膜の膜厚との関係を予め実験など で求めておき、 このデータを制御部 2 5のメモリ (図示せず) に記憶さ せておいて、 このデータに基づいて膜厚を制御することができる。 As described above, a predetermined region including the defective portion 27b is scanned with the ion beam 29 in a state where the gas of the zinc compound and the gas of the tin compound are supplied (FIG. 2 (B)). As a result of this scanning, a transparent conductive film (ITO) 27c is deposited on the predetermined area (FIG. 2 (C)). The film thickness of the transparent conductive film 27c can be controlled by, for example, the number of times of ion beam scanning. Therefore, the relationship between the number of times of ion beam scanning and the film thickness of the thin film is determined in advance by experiments or the like, and this data is stored in a memory (not shown) of the control unit 25, and based on this data. To control the film thickness.
また、 透明導電膜 2 7 cの組成は、 主として、 ィンジゥム化合物のガ ス、 錫化合物のガス、 酸化性ガスおよびイオン阻止ガスの混合比や、 処 理室 1 1 の真空度により制御することが出来る。 従って、 これら混合比 や真空度に関するデータを予め求めておいて、 これらデータに基づいて、 透明導電膜の組成を所望の組成に制御するのが良い。 The composition of the transparent conductive film 27c can be controlled mainly by the mixture ratio of the gas of the zinc compound, the gas of the tin compound, the oxidizing gas and the ion-blocking gas, and the degree of vacuum in the processing chamber 11. I can do it. Therefore, it is preferable to obtain data on the mixing ratio and the degree of vacuum in advance, and control the composition of the transparent conductive film to a desired composition based on the data.
次に、 本発明で用し〈るガスについて説明する。 インジウム化合物のガ スとして、 任意好適なガスを用いることができる。 例えば、 下記 ( 1 ) 式で表される化合物、 下記 ( 2 ) 式で表される化合物および下記 ( 3 ) 式で表される化合物それぞれは、 市販されていて入手が容易であるので、 これら化合物から選ばれる 1 種の化合物のガスまたは 2種以上の化合物 のガスの混合ガスは、 この発明で用いるィ ンジゥム化合物のガスとして 好ましいと推定される。 なお、 ( 1 ) 式、 ( 2 ) および ( 3 ) 式中の R は、 アルキル基であり、 ( 1 ) 式、 ( 2 ) 式および ( 3 ) 式で同じでも 異なっても良い。
このようなィンジゥム化合物のより具体的な例として、 I n ( C 5 H 7 02) 3: 卜リアセチルァセ トインジウムを挙げることができる。 Next, the gas used in the present invention will be described. Any suitable gas can be used as the indium compound gas. For example, a compound represented by the following formula (1), a compound represented by the following formula (2) and a compound represented by the following formula (3) are commercially available and easily available. It is presumed that a gas of one kind of compound selected from the above or a mixed gas of gases of two or more kinds of compounds is preferable as the gas of the indium compound used in the present invention. R in the formulas (1), (2) and (3) is an alkyl group, which may be the same or different in the formulas (1), (2) and (3). More specific examples of such Injiumu compounds, I n (C 5 H 7 0 2) 3: may be mentioned Bok Riasechiruase bets indium.
また、 錫化合物のガスとして、 任意好適なガスを用いることができる 例えば、 下記 ( 4 ) 式で表される化合物、 下記 ( 5 ) 式で表される化合 物、 下記 ( 6 ) 式で表される化合物、 下記 ( 7 ) 式で表される化合物お よび下記 ( 8 ) .式で表される化合物それぞれは、 市販されていて入手が 容易であるので、 これら化合物から選ばれる 1種の化合物のガスまたは 2種以上の化合物のガスの混合ガスは、 この発明で用いる錫化合物のガ スとして好ましいと推定される。 なお、 ( 4 ) 式〜 ( 8 ) 式中の Rは、 アルキル基であり、 ( 4 ) 式〜 ( 8 ) 式で同じでも、 一部同じでも、 全 部異なっても良い。 Any suitable gas can be used as the tin compound gas. For example, a compound represented by the following formula (4), a compound represented by the following formula (5), and a compound represented by the following formula (6) The compound represented by the following formula (7) and the compound represented by the following formula (8) are commercially available and easily available. It is presumed that a gas or a mixed gas of two or more compounds is preferable as the tin compound gas used in the present invention. In addition, R in the formulas (4) to (8) is an alkyl group, and may be the same, partially the same, or entirely different in the formulas (4) to (8).
このような錫化合物のより具体的な例として、 S n ( C 4 H 90 ) 4: テトラターシャリーブトキシ錫を挙げることができる。 A more specific example of such a tin compound is Sn (C4H90) 4: tetratertiarybutoxytin.
I n+O — R、 I n + O — R,
(1) (1)
I n十〇一 R). (2) I n10-1 R). (2)
I n (3) I n (3)
S n十〇一 R) (5 S n10-1 R) (5
4
S n- O R、 Four S n-OR,
( 6 ) (6)
2 S n十 0— R )2 …―(7 ) 2 S n10 0— R) 2 … — ( 7)
S n R 4 ―…(8 ) また、 酸化性ガスとして、 酸素、 オゾンおよび水蒸気から選ばれる 1 種のガス、 または、 2種以上のガスの混合ガスを用いることができる。 これらのガスは、 入手および管理が容易だからである。 S n R 4 --- ( 8 ) As the oxidizing gas, one kind of gas selected from oxygen, ozone and water vapor, or a mixed gas of two or more kinds of gases can be used. These gases are easy to obtain and manage.
また、 イオン阻止ガスとして、 ハロゲンガス、 ハロゲン化水素ガスお よびハロゲンを含む物質のガスから選ばれる 1種のガスまたは 2種以上 のガスの混合ガスを用いることができる。 In addition, one kind of gas selected from a halogen gas, a hydrogen halide gas, and a gas containing a halogen, or a mixed gas of two or more kinds of gases can be used as the ion blocking gas.
上述においては、 この発明の実施の形態について説明したが、 この発 明は上述した実施の形態に何ら限定されず多くの変形又は変更を加える ことができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and many modifications or changes can be made.
例えば、 F I B装置の各構成成分の配置は図 1 の例に限られない。 ま た、 各部 1 1 , 1 3, 1 7などの構成は上述の例に限られない。 For example, the arrangement of each component of the FIB device is not limited to the example shown in FIG. Further, the configuration of each part 11, 13, 17 is not limited to the above example.
また、 上述した実施の形態では F I B装置を用いる例を説明したが、 エネルギービームとしてレーザビームを用いた透明導電膜形成装置の場 合にも実施の形態と同様な効果が期待できる。 Further, in the above-described embodiment, an example in which the FIB apparatus is used has been described. However, the same effect as in the embodiment can be expected in the case of a transparent conductive film forming apparatus using a laser beam as an energy beam.
また、 上述した実施の形態では、 透明導電膜からなる配線に生じた欠 損部分に透明導電膜を堆積させる例を説明したが、 本発明の透明導電膜 の形成方法はマスクレスで透明導電膜を形成したい種々の場合に広く適 用することができる。
産業上の利用可能性 Further, in the above-described embodiment, an example in which the transparent conductive film is deposited on the defective portion generated in the wiring made of the transparent conductive film has been described. It can be widely applied to various cases in which it is desired to form a film. Industrial applicability
上述した説明から明らかなように、 この発明の透明導電膜の形成方法 によれば、 ィンジゥム化合物のガスと錫化合物のガスとの混合ガス雰囲 気中で、 試料の透明導電膜形成予定領域にエネルギービームを照射して、 該予定領域に透明導電膜 ( I T 0 ) を堆積させる。 そのため、 マスクレ スで所定部分に透明導電膜を選択的に堆積させることができる。従って、 液晶表示装置などの表示装置で多用されている透明導電膜からなる配線 に欠陥 (欠損部分) が生じた場合も、 その修正をマスクレスで行うこと ができる。 As is evident from the above description, according to the method for forming a transparent conductive film of the present invention, a transparent conductive film forming region of a sample is formed in a mixed gas atmosphere of a gas of an indium compound and a gas of a tin compound. The transparent conductive film (IT 0) is deposited on the predetermined area by irradiating an energy beam. Therefore, the transparent conductive film can be selectively deposited on a predetermined portion by maskless. Therefore, even when a defect (deletion) occurs in a wiring made of a transparent conductive film often used in a display device such as a liquid crystal display device, the defect can be corrected without a mask.
また、 この出願の透明導電膜形成装置によれば、 所定の処理室、 ィ才 ン供給部、 排気部、 ガス供給部および制御部を具えるので、 透明導電膜 の形成方法および配線の修正方法の各発明の実施を容易にする。
Further, according to the transparent conductive film forming apparatus of the present application, since a predetermined processing chamber, a heat supply unit, an exhaust unit, a gas supply unit, and a control unit are provided, a method of forming a transparent conductive film and a method of correcting wiring are provided. To facilitate the implementation of each invention.
Claims
1 . インジウム化合物のガスと錫化合物のガスとの混合ガス雰囲気中で、 試料の透明導電膜形成予定領域にエネルギービームを照射して、 該予定 領域に透明導電膜を堆積させること 1. In a mixed gas atmosphere of a gas of an indium compound and a gas of a tin compound, irradiating an energy beam to a region where a transparent conductive film is to be formed of the sample, and depositing the transparent conductive film on the predetermined region.
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
2 . 請求項 1 に記載の透明導電膜の形成方法において、 2. The method for forming a transparent conductive film according to claim 1,
前記エネルギ一ビームとしてレーザビームを用いること Using a laser beam as the energy beam
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
3 . 請求項 1 に記載の透明導電膜の形成方法において、 3. The method for forming a transparent conductive film according to claim 1,
前記エネルギービ一ムとして電子ビ一ムを用いること Using an electron beam as the energy beam
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
4 . 請求項 1 に記載の透明導電膜の形成方法において、 4. The method for forming a transparent conductive film according to claim 1,
前記エネルギービームとしてイオンビームを用いること Using an ion beam as the energy beam
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
5 請求項 1 に記載の透明導電膜の形成方法において、 5 In the method for forming a transparent conductive film according to claim 1,
前記ィンジゥム化合物のガスおよび錫化合物のガスと共に酸化性ガス を用いること Using an oxidizing gas together with the gas of the compound and the gas of the tin compound.
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
6 . 請求項 4に記載の透明導電膜の形成方法において、 6. The method for forming a transparent conductive film according to claim 4,
前記ィンジゥム化合物のガスおよび錫化合物のガスと共に、 前記ィ才 ンビームに由来のイオンが透明導電膜および試料に注入されるのを低減 するためのィオン阻止ガスを用いること Use of an ion blocking gas for reducing the ion derived from the electron beam from being injected into the transparent conductive film and the sample, together with the gas of the tin compound and the gas of the tin compound.
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
7 . 請求項 1 に記載の透明導電膜の形成方法において、 7. The method for forming a transparent conductive film according to claim 1,
前記ィンジゥム化合物のガスとして、 下記 ( 1 ) 式で表される化合物
のガス、 下記 ( 2 ) 式で表される化合物のガスおよび下記 ( 3 ) 式で表 される化合物のガスから選ばれる 1 種のガスまたは 2種以上のガスの混 合ガスを用い、 As the gas of the above-mentioned indium compound, a compound represented by the following formula (1) A gas of a compound represented by the following formula (2) and a gas of a compound selected from a gas of a compound represented by the following formula (3) or a mixed gas of two or more gases,
前記錫化合物のガスとして、 下記 ( 4 ) 式で表される化合物のガス、 下記 ( 5 ) 式で表される化合物のガス、 下記 ( 6 ) 式で表される化合物 のガス、 下記 ( 7 ) 式で表される化合物のガスおよび下記 ( 8 ) 式で表 される化合物のガスから選ばれる 1 種のガスまたは 2種以上のガスの混 合ガスを用いること As the tin compound gas, a compound gas represented by the following formula (4), a compound gas represented by the following formula (5), a compound gas represented by the following formula (6), and a following gas (7) Use a gas of a compound represented by the formula and a gas of a compound selected from the gases of the compound represented by the following formula (8) or a mixed gas of two or more gases:
を特徴とする透明導電膜の形成方法 (ただし、 ( 1 ) 式〜 ( 8 ) 式中、 Rはアルキル基であり、 各式で同一でも、 一部同一でも、 全て異なって も良い。 ) 。 (However, in the formulas (1) to (8), R is an alkyl group, and in each formula, the formula may be the same, partially the same, or all different.).
I n. ·〇一 C R、 I n. · 〇 一 C R,
II (1) II (1)
〇 〇
I n十〇一 R). (2) I n10-1 R). (2)
I n R (3) I n R (3)
S n十〇一 R) S n10-1 R)
4 (5) 4 (5)
S n 〇一 C — R S n 〇 一 C — R
II (6) II (6)
〇
S n十 0— R ), ( 7 ) 〇 S n10 0— R), (7)
S n R 4 S n R 4
( 8 ) 8 . 請求項 5に記載の透明導電膜の形成方法において、 (8) 8. The method for forming a transparent conductive film according to claim 5,
前記酸化性ガスとして、 酸素、 オゾンまたは水蒸気を用いること を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, wherein oxygen, ozone, or water vapor is used as the oxidizing gas.
9 . 請求項 6に記載の透明導電膜の形成方法において、 9. The method for forming a transparent conductive film according to claim 6, wherein
前記イオン阻止ガスとして、 ハロゲンガス、 ハロゲン化水素ガスおよ びハロゲンを含む物質のガスから選ばれる 1 種のガスまたは 2種以上の ガスの混合ガスを用いること One or a mixture of two or more gases selected from a halogen gas, a hydrogen halide gas, and a gas containing a halogen is used as the ion-blocking gas.
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film, comprising:
1 0 . 請求項 1 に記載の透明導電膜の形成方法において、 10. The method for forming a transparent conductive film according to claim 1,
前記ィンジゥム化合物のガスと前記錫化合物のガスとの混合比を、 ィ ンジゥムの重量に対する錫の重量が 2〜 1 5 %となるような混合比とす ること The mixing ratio of the tin compound gas and the tin compound gas is such that the weight of tin to the weight of tin is 2 to 15%.
を特徴とする透明導電膜の形成方法。 A method for forming a transparent conductive film.
1 1 . 請求項 1 ~ 1 0のいずれか 1項に記載の透明導電膜の形成方法に より、 透明導電膜からなる配線の欠損部分に透明導電膜の薄膜を堆積さ せて、 該配線の欠陥を修正すること 11. The method for forming a transparent conductive film according to any one of claims 1 to 10, wherein a thin film of the transparent conductive film is deposited on a defective portion of the wiring made of the transparent conductive film to form a transparent conductive film. Fixing defects
を特徴とする配線の修正方法。 A wiring correction method characterized by the above-mentioned.
1 2 . 真空雰囲気を形成でき、 エネルギービームが走行できおよび透明 導電膜を形成したい試料を収容できる処理室と、 1 2. A processing chamber capable of forming a vacuum atmosphere, capable of running an energy beam, and accommodating a sample on which a transparent conductive film is to be formed.
前記エネルギービームを発するエネルギービーム供給部と、 前記処理室内を排気する排気部と、 An energy beam supply unit that emits the energy beam; an exhaust unit that exhausts the inside of the processing chamber;
前記処理室内に、 ィンジゥム化合物のガスおよび錫化合物のガスを供
給するガス供給部と、 A gas of an indium compound and a gas of a tin compound are supplied into the processing chamber. A gas supply section for supplying;
前記処理室内を排気した後、 該処理室内に前記ィンジゥム化合物のガ スおよび前記錫化合物のガスを導入した状態で前記試料の透明導電膜形 成予定領域に前記エネルギービームを照射することにより、 前記予定領 域に透明導電膜を堆積させる処理を少な〈とも実行するように、 前記処 理室、 エネルギビーム供給部、 排気部およびガス供給部を制御する制御 部とを含むこと After evacuating the processing chamber, irradiating the energy beam to the transparent conductive film forming region of the sample with the gas of the indium compound and the gas of the tin compound introduced into the processing chamber, A control unit that controls the processing chamber, an energy beam supply unit, an exhaust unit, and a gas supply unit so as to perform at least a process of depositing the transparent conductive film in the scheduled area.
を特徴とする透明導電膜形成装置。 An apparatus for forming a transparent conductive film, comprising:
1 3 . 請求項 1 2に記載の透明導電膜形成装置において、 13. The transparent conductive film forming apparatus according to claim 12,
前記エネルギービーム供給部としてイオンビーム供給部を含むこと を特徴とする透明導電膜形成装置。
An apparatus for forming a transparent conductive film, comprising an ion beam supply unit as the energy beam supply unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11549199 | 1999-04-22 | ||
JP11/115491 | 1999-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000065611A1 true WO2000065611A1 (en) | 2000-11-02 |
Family
ID=14663839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/002559 WO2000065611A1 (en) | 1999-04-22 | 2000-04-19 | Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW471122B (en) |
WO (1) | WO2000065611A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004077536A1 (en) * | 2003-02-28 | 2006-06-08 | 独立行政法人科学技術振興機構 | Air wiring manufacturing method and air wiring manufacturing apparatus |
JP2012158833A (en) * | 2011-01-31 | 2012-08-23 | Fei Co | Beam-induced deposition of low-resistivity material |
US9951417B2 (en) | 2011-01-30 | 2018-04-24 | Fei Company | Method of depositing material |
CN110444635A (en) * | 2019-08-09 | 2019-11-12 | 苏州腾晖光伏技术有限公司 | A kind of disconnected grid restorative procedure of solar battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158136A (en) * | 1984-12-29 | 1986-07-17 | Sony Corp | Vapor growth method |
JPS6362109A (en) * | 1986-09-02 | 1988-03-18 | 工業技術院長 | Manufacture of transparent conducting film |
JPH0394054A (en) * | 1989-09-05 | 1991-04-18 | Nissha Printing Co Ltd | Substrate having metal oxide film |
JPH04276078A (en) * | 1991-02-28 | 1992-10-01 | Toshiro Maruyama | Chemical vapor growth method |
JPH0964030A (en) * | 1995-08-23 | 1997-03-07 | Mitsubishi Heavy Ind Ltd | Manufacture of silicon oxide film |
JPH10163201A (en) * | 1996-11-28 | 1998-06-19 | Seiko Instr Inc | Pattern forming method and its device |
-
2000
- 2000-04-19 TW TW89107389A patent/TW471122B/en not_active IP Right Cessation
- 2000-04-19 WO PCT/JP2000/002559 patent/WO2000065611A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61158136A (en) * | 1984-12-29 | 1986-07-17 | Sony Corp | Vapor growth method |
JPS6362109A (en) * | 1986-09-02 | 1988-03-18 | 工業技術院長 | Manufacture of transparent conducting film |
JPH0394054A (en) * | 1989-09-05 | 1991-04-18 | Nissha Printing Co Ltd | Substrate having metal oxide film |
JPH04276078A (en) * | 1991-02-28 | 1992-10-01 | Toshiro Maruyama | Chemical vapor growth method |
JPH0964030A (en) * | 1995-08-23 | 1997-03-07 | Mitsubishi Heavy Ind Ltd | Manufacture of silicon oxide film |
JPH10163201A (en) * | 1996-11-28 | 1998-06-19 | Seiko Instr Inc | Pattern forming method and its device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2004077536A1 (en) * | 2003-02-28 | 2006-06-08 | 独立行政法人科学技術振興機構 | Air wiring manufacturing method and air wiring manufacturing apparatus |
JP4704911B2 (en) * | 2003-02-28 | 2011-06-22 | エスアイアイ・ナノテクノロジー株式会社 | Air wiring manufacturing method |
US9951417B2 (en) | 2011-01-30 | 2018-04-24 | Fei Company | Method of depositing material |
JP2012158833A (en) * | 2011-01-31 | 2012-08-23 | Fei Co | Beam-induced deposition of low-resistivity material |
CN110444635A (en) * | 2019-08-09 | 2019-11-12 | 苏州腾晖光伏技术有限公司 | A kind of disconnected grid restorative procedure of solar battery |
CN110444635B (en) * | 2019-08-09 | 2021-12-31 | 苏州腾晖光伏技术有限公司 | Broken grid repairing method of solar cell |
Also Published As
Publication number | Publication date |
---|---|
TW471122B (en) | 2002-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4857010B2 (en) | Beam induced etching | |
JPS62281349A (en) | Formation of metallic pattern film and apparatus therefor | |
US6727500B1 (en) | System for imaging a cross-section of a substrate | |
US6730237B2 (en) | Focused ion beam process for removal of copper | |
JP5662123B2 (en) | EUV mask correction apparatus and method | |
DE60237886D1 (en) | MASK CORRECTION BY ELECTRON BEAM-INDUCED CHEMICAL STEEL | |
US6440615B1 (en) | Method of repairing a mask with high electron scattering and low electron absorption properties | |
US9334568B2 (en) | Beam-induced deposition of low-resistivity material | |
CN1839349B (en) | Method for high-resolution processing of thin layers with electron beams | |
JP2004502291A (en) | Apparatus for forming microstructure on the surface of semiconductor wafer by ion beam | |
US7786403B2 (en) | Method for high-resolution processing of thin layers using electron beams | |
WO2000065611A1 (en) | Method of forming conducting transparent film, method of repairing wiring connection, and apparatus for forming conducting transparent film | |
JP2012074194A (en) | Charged particle beam device, thin film forming method, defect correcting method, and device manufacturing method | |
WO2000065406A1 (en) | Method of correcting phase shift mask and focused ion beam device | |
JP4031146B2 (en) | Display element correction device | |
JP5941522B2 (en) | Ion beam equipment | |
JP2001007079A (en) | Processing method using ion beam | |
JP3218024B2 (en) | Method and apparatus for forming metal pattern film | |
TW449874B (en) | Method of patching interconnection and focused ion beam device | |
JP2000017431A (en) | MgO FILM FORMING METHOD AND PANEL | |
JP4118444B2 (en) | Method for aligning energy beam for neutralization and focused ion beam apparatus | |
TW202433530A (en) | Methods and devices for the contactless setting of an electrostatic charge of a sample | |
JPH11330209A (en) | Method and device for treating sample | |
WO1998059380A1 (en) | Dry-etching of thin film layers | |
JPH03122643A (en) | Ion beam working method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 614465 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09959839 Country of ref document: US |