WO2002023403A2 - System and method for obtaining and utilizing maintenance information - Google Patents
System and method for obtaining and utilizing maintenance information Download PDFInfo
- Publication number
- WO2002023403A2 WO2002023403A2 PCT/US2001/028587 US0128587W WO0223403A2 WO 2002023403 A2 WO2002023403 A2 WO 2002023403A2 US 0128587 W US0128587 W US 0128587W WO 0223403 A2 WO0223403 A2 WO 0223403A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- computer
- act
- camera
- coupled
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/008—Registering or indicating the working of vehicles communicating information to a remotely located station
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
Definitions
- the present invention relates to maintenance systems and, more particularly, to systems and methods for obtaining and utilizing maintenance information.
- Maintenance logs are used to record maintenance information by personnel performing maintenance and inspection on objects, such as motors, aircraft, boats, machines, structures and buildings. These maintenance logs typically include information regarding the condition of the object and/or the work being performed on the object, and provide an historical record of such information. Typical logs take the form of notebooks, whereby the person performing the maintenance can write descriptions of the condition of the object and/or the work performed. The log can be maintained as a reference point for future maintenance and performance information regarding the object.
- a method of maintaining an object comprises the acts of storing, in digital format, a first image of the object at a first time, obtaining a second image of the object at a second time, comparing the first image to the second image, and determining whether to perform maintenance on the object based, at least in part, on the act of comparing.
- a method of inspecting an object from a remote location comprises the acts of obtaining a digital image of the object at a first location, electronically transmitting the digital image to a second location remote from the first location, viewing the digital image at the second location, transmitting instructions to the first location, and performing an act on the object in response to the instructions.
- an electronic inspection apparatus is provided.
- the apparatus is adapted to communicate with a camera to obtain an image of an object.
- the apparatus comprises a casing, a computer disposed within the casing, and a camera control unit disposed within the casing and coupled to the computer.
- the camera control unit is adapted to receive electronic images from the camera, reformat the electronic images into digital format and pass the digitally formatted images to the computer.
- the apparatus also includes an input device, coupled to the computer, that is adapted to allow a user to input full text data relating to the image.
- an electronic inspection apparatus is provided.
- the apparatus is adapted to communicate with a camera to obtain an image of an object.
- the apparatus comprises a casing, a computer disposed within the casing, and a camera control unit disposed within the casing and coupled to the computer.
- the camera control unit is adapted to receive electronic images from the camera, reformat the electronic images into digital format and pass the digitally formatted images to the computer.
- the apparatus further includes a computer readable storage medium, coupled to the computer, having an executable code stored thereon. The code allows the computer to execute at least two processes in a multitask fashion.
- an electronic inspection apparatus is provided, the apparatus is adapted to communicate with a camera for obtaining an image of an object.
- the apparatus comprises a casing, a computer disposed within the casing, and a control unit disposed within the casing and coupled to the computer.
- the control unit is adapted to communicate with the camera.
- the apparatus further includes an input device coupled to the computer and the control unit.
- the input device is adapted to receive an input command from a user.
- the control unit is adapted to receive the command and signal at least portions of the camera to react as commanded.
- an aircraft inspection system in another embodiment, includes a camera adapted to view a component of the aircraft, and a portable electronic apparatus communicating with the camera,.
- the apparatus includes a casing, a computer disposed within the casing, and a camera control unit coupled to the computer and disposed within the casing.
- the camera control unit is adapted to receive an image from the camera and pass the image to the computer.
- the apparatus also includes a display coupled to the computer that is adapted to display the image.
- An input device is coupled to the computer and is adapted to allow a user to input maintenance data relating to the component.
- the apparatus further includes a storage medium communicating with the computer. The storage medium is adapted to store the image and related data.
- an electronic maintenance apparatus is provided.
- the apparatus is adapted to communicate with a camera to obtain an image of an object.
- the apparatus comprises a casing, a computer disposed within the casing, and a storage medium communicating with the computer.
- the storage medium includes maintenance information regarding the object being imaged.
- Figure 1 is a schematic representation of a maintenance system according to one aspect of the invention.
- Figure 2 is an illustration of an exemplary use of the system of Figure 1;
- Figure 3 is a perspective view of a maintenance apparatus for use with the system according to one embodiment of the invention;
- Figure 4 is an exploded perspective view of the maintenance apparatus of Figure 3;
- Figure 5 is a view of the maintenance apparatus of Figure 3 showing an example of a display provided by the maintenance apparatus;
- Figure 6 is a partially cut away perspective view of an imaging system for use with the maintenance apparatus of Figures 3-5;
- Figure 7 is a partially cut away perspective view of the imaging system shown in Figure 6;
- Figures 8a and 8b are partially cut away perspective views of an illustrative focusing mechanism employed in the system of Figure 6-7;
- Figure 9 is a partially cut away perspective view of an alternative embodiment of the imaging system including an adapter that adapts a standard camera head to be mated with a coupler shown in the system of Figures 6-7; and
- Figure 10 is a partially cut away perspective view of the adapter shown in Figure 9.
- a system for obtaining and storing maintenance information in electronic format includes an apparatus having an LCD, a touch panel, a camera connector, camera adjustments and a flashcard port.
- the apparatus houses a camera control unit (CCU) and a computer, which are used to receive and process images from an imager which is attached to the apparatus at the camera connector.
- This CCU and computer are also used to process images and data and place these images and data on a storage media such as a flashcard, which may be removably placed in the flashcard port.
- the apparatus also has attachment connectors for an external keyboard if one is desired by the user, external computer display video OUT and IN connectors as well as battery and external power connectors.
- the apparatus may be used by maintenance personnel to capture images of the equipment or objects they are inspecting or maintaining as well as enter notes or detailed descriptions in writing or voice recording as adjuncts to the aforementioned images.
- the apparatus may also be wearable, battery powered, voice or touch activated. Once the pictures and data are captured and stored, they may be down loaded to other computers and or transmitted via the Internet or other transport methods.
- the storage media may be maintained with the apparatus in a separate housing carrying/storage case for permanent records that may stay with the apparatus for further reference.
- the apparatus may use storage media which has been Preformatted with desired maintenance programs that could contain parts list, training material, instructions for use, instructions on how to accomplish a job at hand, check list, operations manuals and other material not limited to the aforementioned.
- the apparatus will enable the user to keep and maintain a wear history on mechanical objects (e.g., engine components) thus enabling the user to make judgments on when a part might fail prior the part actually failing.
- mechanical objects e.g., engine components
- Another embodiment of the present invention is directed to a method of maintaining a digital maintenance information.
- One embodiment of the present invention relates to a method of maintaining a digital maintenance information that includes pictures and/or text concerning the system being maintained.
- the use of pictures is particularly powerful, as it enables one viewing the maintenance apparatus to compare and contrast the manner in which a component of the system has worn over time. It should be appreciated that any suitable type of camera can be used to take such pictures.
- a set of pictures can be taken of key components of a system before the system is sent to the customer. Thereafter, during periodic maintenance checks, additional pictures can be taken, which can enable one to view the maintenance apparatus to compare the way the parts have worn.
- a computer readable medium can be installed on the system to be maintained, so that the maintenance file can be stored therein.
- the storage medium provided with the system can include pictures of certain components of the system when initially shipped to the customer, although the aspect of the present invention related to installing the digital maintenance file on the system to be maintained is not limited in this respect.
- the embodiment of the present invention relating to installing the storage medium that stores the digital maintenance file on the system to be maintained is not limited to the use of a photographic maintenance file, as embodiments of the present invention contemplate that merely a text maintenance file can be employed.
- the digital maintenance file is mounted to the system to be maintained, such that the maintenance file always stays with the system and can be accessed by maintenance personnel wherever the system is present, and further, cannot be lost.
- the maintenance file can be backed up and stored away from the system to be maintained to enhance the security of the data that comprises the digital maintenance file.
- the apparatus can be provided with a video output, such that videotapes can be made of the digital pictures taken.
- maintenance personnel can be provided with a remote system for recording digital information (photographic and/or text) while inspecting the system into a computer readable medium that they can carry around with them.
- This remote system can be cordless for ease of use (e.g., it can be battery powered). Once the inspection is complete, the remote system can be coupled to the storage medium installed on the system to be maintained and the information from the maintenance inspection can be downloaded into the digital maintenance file on the system.
- Such a maintenance apparatus can be used with numerous types of systems, including aircraft (e.g., airplanes and helicopters), boats, automobiles, trucks, military equipment (e.g., tanks, etc.) and other systems as will be explained below.
- aircraft e.g., airplanes and helicopters
- boats e.g., boats, automobiles, trucks
- military equipment e.g., tanks, etc.
- One embodiment is directed to a method and apparatus for obtaining, recording, displaying, storing, transmitting and/or receiving maintenance and other information electronically, allowing a user to capture and store images, sound, error codes, related text or voice data and/or other information concerning the system or object being maintained.
- the information can be stored locally and/or transmitted to remote locations. Retrieval of the images and other information at a later date provides an historical perspective of the object, enabling one using the maintenance apparatus to compare and contrast the condition of the object over time.
- diagnostic information and/or support information may also be transmitted to and from the maintenance apparatus. Such information may alternatively be pre-stored for later retrieval.
- the maintenance apparatus may be used as an interface between the object to be inspected and the person performing the inspection.
- the apparatus allows a user to receive maintenance information, such as historical and/or real-time information regarding the object, and determine a course for corrective action to be performed on the object as necessary. In this manner, a user may make maintenance judgments, such as, for example, whether the object needs maintenance or when the object might fail prior the object actually failing.
- a maintenance system 10 includes a maintenance apparatus 20 that receives real-time or current data 22a concerning the condition of one or more objects 24, such as a mechanical component, being inspected.
- the data 22a concerning the object may relate to physical characteristics of the object 24, the interaction of two or more physical components, the operation of any object, such as the operating characteristics of any physical or electronic component, or any other characteristic of the object, as the present invention is not limited to receiving any particular types of data.
- the data 22a may be in the form of one or more images 26, audio 28 (e.g., the sound of the object as it functions), error codes 30, any suitable combination thereof, or any other data, as the present invention is not limited in this respect.
- the image 26 of the object may be generated by any image producing device as invention not limited in this respect.
- audio 28 may be obtained with the use of any suitable device (e.g., a microphone), and the error code 30 may be obtained with any suitable interface.
- Notes or detailed descriptions in text format 32 or voice recording 34 may be input into the apparatus 20 as adjuncts to the aforementioned data 22a and may be inputted using a user interface 36.
- the data 22a may be presented to a user using one or more suitable output devices 38.
- the maintenance apparatus 20 may store the data (labeled as 22b in Figure 1) locally (e.g., in a storage medium of the apparatus 20) or remotely (e.g., at a central maintenance facility).
- the local storage medium may be internal or external to the apparatus 20 (e.g., in a separate housing carrying/storage case (not shown)), thereby providing a record that may stay with the apparatus 20 for further reference.
- the apparatus may provide access to maintenance information that may include, in addition to the present data 22b concerning the object, any one or more of the following: information regarding the initial condition 39 of the object; historical information 40 of the object; diagnostic information 42; instructional information 44 (e.g., parts list, training materials, instructions for use, instructions on how to accomplish a job at hand, check lists, operations manuals, layout info ⁇ nation, schematic and parts diagrams, object location diagrams, etc.); and support 46 (e.g., help menu and/or real time technical assistance from technical support personnel when the apparatus is communicating with a maintenance facility or manufacturer/provider of the object 24).
- Such additional information may be stored locally (e.g., within the apparatus 20) or remotely, with the apparatus 20 having the capability to communicate with the remote location. Any of the above described information can be employed with the apparatus
- the historical information 40 may be provided using any suitable technique.
- the historical information 40 may include a compilation of maintenance and inspection data 22b previously obtained by the user or users. Data concerning the initial condition 39 of an object may be provided to a customer of the system for subsequent comparison with real time information. For example, a set of images can be taken of key components of a system before the system is sent to a customer. During periodic maintenance checks, additional images can be taken, which can enable one to view the maintenance apparatus to compare the current data with the initial condition information or historical information to determine the way the parts have worn.
- the system can communicate with a remote facility.
- a remote facility This provides a number of advantages. For example, as may be the case with aircraft, maintenance for certain objects may be performed at different locations. Using the remote communication ability, an inspector at a first location may record his or her observations and upload the data 22b to a central database, so that an inspector at a second location may download that data prior to performing a subsequent inspection on the same aircraft.
- a computer readable medium can be installed on the object to be maintained (e.g., installed on an aircraft), so that the maintenance information can be stored therein.
- the storage medium provided with the object can include any of the types of data described above, including pictures of certain components of the object when initially shipped to the customer, although the aspect of the invention related to installing the maintenance information on the system to be maintained is not limited in this respect.
- the embodiment of the present invention relating to installing the storage medium that stores the maintenance information on the object to be maintained is not limited to the use of image data, as embodiments of the present invention contemplate that text, audio, error code and/or other data can be employed.
- An advantage of installing the maintenance information on the object to be maintained is that the maintenance information always stays with the object and can be accessed by maintenance persomiel wherever the object is present, and cannot be lost.
- the apparatus can be coupled to the storage medium installed on the object to be maintained and the information from the maintenance inspection can be downloaded into the file stored on the object.
- the maintenance information can be backed up and stored away from the object to enhance the security of the data that comprises the maintenance information.
- a maintenance worker or inspector 50 inspects an engine 52 of an airplane using the maintenance apparatus 20 according to one embodiment of the present invention.
- the inspector 50 probes into the engine compaitment 53 using a suitable data input device (such as a camera, scope, microphone, etc., (not shown)) coupled to the apparatus 20 via a link 54.
- An inspection port 55 formed on the engine housing 53 may be used to facilitate inserting the input device to enable the user to obtain the desired data.
- Data 22b (Fig. 1) is captured by the apparatus 20 for subsequent processing and analysis.
- the inspector 50 inserts a camera 50 into the engine compartment to obtain an image of the engine.
- the inspector 50 may record additional data, such as notes regarding the condition of the engine, the serial number of the engine, the date of inspection, the aircraft tail number or other identifier, the inspector's name, etc. This can be performed using a user interface 36 (Fig. 1) or the apparatus 20, which can be a keyboard, touch screen or any suitable interfaces as will be described below.
- the inspector 50 may also recall previously stored information regarding the engine, such as the aforementioned initial condition 39, historical information 40, diagnostic information 42 or instructional information, 44 and determine a course of action.
- the apparatus 20 may communicate with a remote facility through a suitable communications link (shown as 56 in Figure 2).
- Linlc 56 can be any suitable communication medium, including wireless communication.
- the remote facility may include a computer 57 storing a database (not shown) capable of storing any of the above mentioned information concerning the object being inspected.
- Technicians at the remote facility may be able to remotely obtain and analyze the information obtained by the apparatus 20 to provide guidance to the inspector 50 regarding any action necessary.
- the communication of the apparatus with the remote facility enables technicians at a remote site to obtain the data in real time, thereby enhancing maintenance efficiency. Alternatively, the technician at the remote facility may view and analyze the maintenance information at a later time.
- the maintenance apparatus 20 may also be used as a communication interface between an inspection facility and the object 24 being inspected. In this manner, an inspector can be posted at the remote location while a helper is located on site to manipulate the apparatus 20 and/or its associated data gathering device(s). This enables the remote inspector to obtain real time data and render a maintenance decision from a remote location without the need for a skilled technician on site with the object being inspected.
- one or more data gathering devices may be installed on the object to be inspected, with the apparatus 20 being capable of communicating with these devices.
- an aircraft, ship or other object may be outfitted with several cameras capable of viewing certain areas within the object. The apparatus 20 may communicate with each of these cameras, via hardwire or wireless connection, to receive an image of the area to be inspected. Multiple views may also be generated to view an area from different locations and/or to view the interaction of multiple components.
- the maintenance apparatus 20 may be implemented in any suitable manner, as the present invention is not limited in this respect.
- the maintenance apparatus 20 is implemented as a portable hand-held digital computer/camera assembly.
- the assembly may be housed within a casing, resulting in the approximate size and weight of a laptop computer.
- the hand-held apparatus may be up to about ten to fourteen inches long, up to about eight to twelve inches wide, and up to about one to four inches tliick.
- the apparatus 20 may include or otherwise communicate with a storage medium and may also include a power source (e.g., a battery pack) that renders the apparatus cordless and easily transportable. In one embodiment, the apparatus 20 is less than about ten pounds.
- the apparatus 20 is less than about five pounds, and most preferably, less than about three pounds. It should be appreciated that the power pack may comprise a large percentage of the weight. Thus, the weight of the apparatus 20 depends upon the size of the power pack included within the apparatus 20. With such a hand-held apparatus, increased portability and ease of use may be attained.
- the illustrative embodiment of the apparatus 20 shown in Figures 3-5 includes several main components, including input devices 70a-70f, output devices 80a, 80b, 70b, 70c, a motherboard 90, a camera control unit 100, a video chip 110, and a casing 130, each of which will be discussed in more detail below.
- the data input devices and the data output devices may be any number of devices, either internal to the apparatus or connected externally via any number of techniques, and in some instances, the input and output devices may be part of the same device.
- the data being inputted to or outputted from the apparatus 20 may be in any format, including but not limited to, still image data, streaming video images,, text and audio, and may be sent to or received by the apparatus as desired.
- the motherboard 90 includes a central processing unit
- CPU central processing unit
- computer readable storage medium 94 coupled to the CPU 92 (e.g., via a bus (not shown)), and at least one input/output (I/O) connection 95 coupled to the CPU 92.
- the motherboard can be custom designed or can be any of a number of standard devices.
- the motherboard 90 controls data flow and storage, and works in conjunction with the video chip 110 and camera control unit 100 (CCU) to facilitate image processing and display.
- the input devices 70a-70f provide the apparatus 20 with data. At least one of the devices provides a user interface.
- a user may be human or non-human, as in the case of an application program or another device. Any of a number of input devices may be employed.
- the apparatus 20 may have any number of internal input devices, disposed within the confines of the casing of the apparatus, as well as any number of external devices through suitable connections.
- the input devices can include control units, such as buttons, knobs or switches, keypads, touch screen, the other input devices and the output devices etc. to control various aspects of the apparatus.
- Human user input can also be obtained from an externally connected mouse, keyboard, joystick, glove, headset, microphone or any other manually controlled devices.
- a touch screen 70a is employed for human user input.
- a touch screen controller 72 is connected to the touch screen 70a and the motherboard 90 and transfers the data from the touch screen 70a to the motherboard 90 for further processing and storage.
- Any of aforementioned external input or output devices may be attached to the apparatus 20 in numerous ways, via, for example, a connection port 74.
- the apparatus may also include voice recognition software, so that data may be input or the system may be controlled by voice. Voice recordings may also be stored in the apparatus 20.
- a flashcard 70b may be employed as a storage medium and may be installed through a PCMCIA (Personal Computer Memory Card International Association) card port 76.
- the flashcard 70b may be in addition to the memory already present on the motherboard 90.
- the flashcard 70b may be removable through the slot, or permanently attached to the apparatus 20 and contained within the device via a detachable, protective, screw-on covering 78. The card can be used to store pre- configured data.
- Information stored on other devices can also be transmitted to the apparatus 20 via any of numerous communication mediums 70c, including but not limited to wireless communication media, such as cellular, satellite or infrared communication, modem connections, Ethernet connections, etc may be made through the PCMCIA port 76. Hardware enabling these communication mechanisms may be internal to the apparatus 20 in some embodiments and connected externally in others. Additionally, information may be transferred into the apparatus 20 via any of the numerous devices, for example: magnetic media (e.g., videotapes, audiotapes or floppy disks), optical media (e.g., CDs DVDs or laser disks), and electronic media (e.g., EPROM).
- magnetic media e.g., videotapes, audiotapes or floppy disks
- optical media e.g., CDs DVDs or laser disks
- EPROM electronic media
- One method of connection for any video input is an S-Nideo (Super-Video) connection port 79 hardwired to an S- Video-compatible device capable of reading the product.
- the present invention is not limited to this type of connection, as ports and devices formatted for other types of video signals may be employed, including, for example, a composite signal.
- the apparatus 20 is capable of receiving images from a camera, such as camera 70d shown in Figure 3. Any suitable camera or cameras may be used, as the present invention is not limited in this respect.
- the camera 70d is NTSC (National Television Standards Committee) compatible. NTSC is the one of several camera standards used in the United States.
- cameras compatible with other television broadcast standards may be used, including those compatible with the PAL (Phase Alternate Line) or SEC AM (Systeme Electronique Couleur Avec Memoire) systems, or any other type of camera.
- the camera may be connected to the apparatus 20 in any suitable manner, as the present invention is not limited in this respect.
- the camera 70d is connected to the apparatus 20 through port 78 on the apparatus 20 via an electronic cable 79.
- an image sensor e.g., a charge-couple device, also referred to as a CCD
- a fiber optic cable extending from the camera may be employed.
- a fiber optic cable may also be used to transmit digital code representative of the image viewed by the camera to the apparatus 20, even where the camera includes a CCD.
- Wireless, Ethernet or modem connections enabling data and image transfer from remote cameras or other sources may also be employed, as the present invention is not limited to the use of any particular connection technique.
- Audio signals from the object being inspected may also be stored and/or transmitted via the apparatus 20.
- the camera 70d may include a microphone 70e to pick up such audio.
- a separate probe including the microphone 70e or other such sound or vibration receiving device may be employed.
- Error code signals may also be received by the apparatus 20 using a suitable connection 70f.
- some of the input devices lOa-lOf may be controlled by the apparatus 20, rather than independent device controls.
- one or more camera control buttons or other interfaces may be provided on the apparatus and coupled, though the apparatus, to the camera to allow a user to operate and maneuver the camera 70d.
- Camera control may be made via a Motion Control Card (MCC) 97 that is hardwired to the camera 70d or otherwise communicates with the camera 70d via a wireless communication.
- Camera maneuvering may be made using any of the foregoing input devices that may communicate with the MCC.
- Control and/or maneuvering of the camera includes at least focusing, zooming, change viewing axis, etc., as the present invention is not limited in this respect.
- Control of the camera can occur because, in one embodiment, the camera includes a stepper motor coupled to various components of the camera, e.g., a gimbal for moving the camera head.
- the MCC can control the stepper motor as desired.
- the camera 70d may be manipulated by hand, as the present invention is not limited in this respect.
- a white balance control button 77 intended to compensate for the amount of ambient light coming into the camera 70d, may be employed. Control button 77 is internally connected to the CCU.
- the apparatus 20 has at least one output device used to display and/or store images and data.
- an LCD (Liquid Crystal Display) screen 80a is coupled internally to the motherboard 90 and is visible to the user through a cut-out in the casing 130.
- An LCD back light inverter 82 may be employed to control the illumination of the screen 80a.
- the LCD 80a works in conjunction with the aforementioned touch screen 70a to act as both an input and an output device.
- the LCD is one example of a display and other suitable displays can be used.
- This LCD 80a may be configured to display image data, video data and text data in any number of display patterns 84, as shown in Figure 5.
- the display 84 includes a split screen comprising an image of keys, such as atypical keyboard setup 85, enabling a user to type on the touch screen 80a using his or her fingers or other such probe, and an image display region 86 for displaying the imaged component with related text, if included.
- the orientation (landscape or portrait) of images in region 86 can be manipulated, as will be discussed below. These images may be still or streaming video, as the present invention is not limited to any particular convention.
- the image display region may also include a split screen, wherein images and text data from two or more cameras, each viewing a component, may be displayed.
- the split screen may display stored or historical images and or text of one or more components as well as real time data.
- the split screen may also be used to display any of the other aforementioned data. Additional electronic hardware and software may be necessary to view images in a split screen mode.
- An external monitor or television may also be attached to the apparatus 20 and configured as a display in any of the manners disclosed above.
- the external monitor is connected to the apparatus 20 via a hardwire connection to a VGA (Video Graphics Array) port 87.
- VGA Video Graphics Array
- a television is connected to the apparatus 20 via a hardwire connection to the aforementioned S-video port.
- data output is made through the communication medium 70c, such as a modem, Ethernet or wireless devices.
- Data may also be outputted to memory, including the aforementioned flashcard 70b, the motherboard's internal memory, or any other memory device known to those in the art, internal or external to the apparatus 20, such as the aforementioned magnetic media, optical media, or electronic media.
- a speaker 80b may optionally be coupled to the apparatus 20 or otherwise included therein for presenting audio picked up by the microphone 70e, whether real-time or previously stored, regarding the object being inspected as well as previously recorded or real time voice transmission. It is to be appreciated, however, that the use of audio data and the speaker are not required for all embodiments.
- the motherboard 90 controls data flowing in and out of the device and internal device activity.
- the motherboard contains the CPU 92, memory, buses, and I/O connection sockets.
- the CPU can be any suitable processor (e.g., such as a Mobile P3, available from the Intel Corporation, Santa Clara, CA).
- the motherboard 90 can be custom designed, or can be any of numerous commercially available motherboards.
- One such motherboard 90 that may be employed is the Microbus MPX-233111 , manufactured by Microbus Inc. of Houston, Texas.
- the Microbus MPX-233111 contains a video chip 110 coupled to the motherboard 90 through a COM (serial communications) port.
- This motherboard may be used with a Philips 69000 video chip, manufactured by Philips Semiconductors of Eindhoven, The Netherlands, as the video chip 110.
- the CCU 100 is also coupled to the motherboard 90 and is used to control and receive images from one or more of the external cameras 70d described above.
- a CCU 100 that may be used is the Panasonic GP-KS 162CBP WNTCE manufactured by the Panasonic Systems Company of Elgin, Illinois. Both the video chip 110 and the CCU 100 aid in manipulating and displaying graphics data. It should be appreciated that the name brand and type of components described are exemplary, as the present invention is not limited in this respect.
- Most incoming data flows through the motherboard 90 upon entering the apparatus 20. Input data received via the camera 70d may be received by the CCU 100 before being processed by the motherboard 90.
- the CCU 100 is capable of controlling one or more parameters of camera generated images including gain and white light balance and controlling an electromc iris for contrast.
- the aforementioned white balance control button 77 is connected to the CCU 100 so that an initial white balance reading may be obtained. To take such a reading, the user places a piece of white paper in front of the camera 70d and depresses the white balance control button 77. The CCU 100 uses this reading to measure the amount of ambient light. Then, the CCU 100 uses the reading to adjust the color data in all subsequent camera shots, compensating for the ambient light.
- the CCU can also perform analog to digital (A/D) conversion.
- A/D analog to digital
- the CCU may receive images in any electronic format fiom the camera and reformat the images into digital format.
- the CCU then passes the digitally formatted image to the CPU.
- the video chip 110 can perform a variety of image manipulations on any image, and is not limited to manipulating solely camera generated images.
- the video chip 110 is capable of A/D conversion, as well as formatting the image into known image formats, such as JPEG (Joint Photographic Experts Group).
- JPEG Joint Photographic Experts Group
- the CPU 92 retrieves any requested data and sends it to the proper output device as requested.
- the CPU 92 also processes, stores or sends any inputted data as directed.
- Software used in the apparatus 20 may be run by and controlled by the CPU 92.
- Such software may be custom software or commercially available software, such as XFREE86 provided by The XFree86 Project, Inc (available from the University of Sydney, Australia) that runs on UNIX ® and compatible (e.g., Linux, BSD, Mac OS X and Solaris x86 series) operating systems and OS/2 and a suitable windows manager.
- This or other software may be used so that the CPU can perform concurrent operations of two or more processes in a multitask fashion.
- Linux operating system is run on the apparatus, available from Linux.com.
- Word processing or other text processing software may be employed to handle partial or full text inputs by a user.
- any text information that a user desires may be inputted, not merely pre-programmed information.
- preprogrammed information such as checklists, may also be employed.
- the images or audio data may be attached as a file to the text resulting text file.
- Additional software may include an image manipulation package, enabling the data to be formatted according to certain display constraints. Some possible manipulations may include image rotation, image sizing and choosing between landscape and portrait display options.
- the CPU 92 may employ any of a number of algorithms to handle these tasks, as will be explained below.
- the memory 94 is used to buffer several frames of incoming streaming video such that the images can be processed frame by frame and then displayed to the user at a rate comparable to that of real time, but several microseconds later. This process improves display quality and facilitates image manipulation. For example, each frame in the buffer may be rotated prior to being displayed to the user.
- the CPU 92 can interface with the motherboard's memory 94 in any of numerous ways, e.g., through various busses.
- the motherboard 90 contains 64 MB of RAM (Random Access Memory).
- the present invention is not limited by the type or amount of storage placed on the motherboard 90, as additional types or amounts may be coupled to the motherboard 90.
- both the memory 94 and the CPU 92 interface with the I/O devices through the I/O connection.
- a power supply interface is provided by a port 112 capable of hardwire connection to an external power supply.
- the power supply level may be about 12 N, or other levels may be employed.
- the apparatus 20 can include an on-board power source, such as a battery 114 (Fig. 4), which may be rechargeable and housed within the casing, thereby rendering the apparatus 20 cordless.
- the various components forming the apparatus 20 may be housed within a casing 130.
- the casing 130 includes a front casing 130a and a back casing 130b that intercom ect to form an enclosure.
- the front casing 130a contains a cutout 132 for the display screen 80a and touch screen 70a.
- the back casing 130b is substantially rectangular and may also one or more cutouts 134 for ports to external devices and/or control buttons, knobs, switches or other interfaces.
- the front and back casings 130a, 130b may be secured together using any suitable technique, such as with the use of screws.
- the casing 130 may contain various bosses to support and secure the various electronic and mechanical components of the apparatus 20.
- the casing 130 also contains two sets of four curved finger grooves 136 on the external side to aid in handling the apparatus 20. Handles 138 are attached to the casing 130 over these groves, leaving about a one to two inch space for a user's hands. A hook 140 may be mounted to the case to allow the apparatus 20 to be hung for hands-free use. It should also be recognized that casing for the apparatus 20 can take many other shapes and configurations, as not limited.
- the casing 130 of the apparatus 20 may be manufactured out of many types of material in order to satisfy the needs of the user. For example, the apparatus 20 may be ruggedized and/or waterproofed.
- any suitable type of imaging unit or camera can be used with the apparatus 20 to provide images of the object 24.
- an imaging system including a camera assembly and a scope, with which the apparatus 20 of the present invention can be used, will now be described with reference to Figures 6-10.
- Figure 6 is a partially cut away perspective view of an example of an imaging system that may be used with the apparatus 20.
- the imaging system includes four primary components, i.e., a scope 150, such as an endoscope, an imaging unit or camera assembly 152, a coupler 154, which couples the scope 150 to the imaging unit 152, and a condom-like drape 400, which prevents the imaging unit 152 from contaminating a sterile operating field should the system be used in a medical environment, a clean room environment for the manufacture of e.g., silicon wafers, or other sterile environments.
- the use of the condom-like drape 400 need not be employed when inspecting components, such as aircraft engines.
- the imaging system can be employed with any type of image-producing scope, and is not limited to use with any particular type of scope.
- the condom-like drape 400 does not intercept the optical viewing axis of the system.
- the condom-like drape 400 does not cover a focusing mechanism 480 of the imaging system, making it easier to focus the system and lessening the likelihood that the drape 400 will be damaged due to manipulation of the focusing mechanism.
- the lens for focusing the image from the endoscope to the imaging unit may be provided in the imaging unit 152, rather than in the coupler 154. This is particularly advantageous because, as discussed in more detail below, in the exemplary embodiment shown, a portion of the coupler 154 is not separated from the scope 150 by the condomlike drape 400, and therefore, is sterile in use.
- the coupler 154 can be made significantly less expensively, thereby enabling the coupler 154 to be provided as a disposable part that need not be sterilized between uses. This is advantageous because the sterilization of the devices can be inconvenient and time consuming.
- the imaging unit 152 includes an image sensor 156 that senses an image along an imaging axis (not shown).
- the coupler 154 is coupled between the eyepiece 158 of the scope 150 and a distal end 660 of the imaging unit 152 such that the lens 200 is disposed between the image sensor 156 and the eyepiece 158 to focus an image produced by the scope 150 onto the image sensor 156.
- the refractive lens 200 may be provided in the imaging unit 152, rather than in the coupler 154.
- the coupler can be therefore made significantly less expensively, thereby enabling the coupler to be provided as a disposable part that need not be sterilized between uses.
- the image sensor 156 may, for example, include a charge-coupled device (CCD) as discussed above, or a metal-oxide semiconductor (MOS) sensor. It should be appreciated, however, that the present invention is not limited in this respect, and can be employed with any type of image sensor 156.
- the image generated by the image sensor 156 can be conveyed to the maintenance apparatus 20 or a monitor 460 in any of numerous ways, and the present invention is not limited to any particular implementation.
- the image sensor 156 may be coupled to circuitry 560 which can assist in converting an image sensed by the image sensor 156 into an electrical signal.
- This electrical signal then may be transmitted (e.g., via cable 260) to the monitor 460, maintenance apparatus 20 or elsewhere for display to a user or may be otherwise processed and/or recorded on a suitable medium.
- the image sensor 156 may comprise a bundle of fiber optic cables which optically transmit an image from the lens 200 to the apparatus 20 or other a viewing device for display to a user.
- the image sensor 156 need not necessarily convert the image from scope 150 into an electrical signal.
- the imaging unit 152 is releasably mated with the coupler 154. This mating may be accomplished using any of a number of techniques. Figures 6 and 7 illustrate one technique that may be used to mate these two components.
- a distal end 660 of the imaging unit 152 is inserted into an opening 880 at a proximal end 1100 of the coupler 154.
- the imaging unit 152 includes a button 580 which is pivotally connected, via a pin 820, to a body portion 180 of the imaging unit 152.
- the imaging unit 152 has a cavity 810 formed underneath the button 580 and a spring 900, disposed in the cavity 810.
- Spring 900 biases the button 580 (in a clockwise direction in Figure 6) about pin 820 so that locking member 600 is biased away from a surface 860 of body portion 180.
- spring 900 is compressed so that button 580 moves in a counterclockwise direction in Figure 6 about pin 820 and locking member 600 moves toward surface 860.
- the button 580 is depressed and the distal end 660 of the imaging unit is inserted into the opening 880 in the coupler 154, the locking member 600 moves toward surface 860 so that it can slide over edge 1180 of the coupler 154.
- the locking member 600 When the button 580 is released, the locking member 600 is biased (by spring 900) away from surface 860 and into a notch 620 in the coupler 154, and a shoulder 1160 of imaging unit 152 contacts a shoulder 1140 of the coupler 154, thereby interlocking the imaging unit 152 and the coupler 154.
- An indication that the distal end 660 of the imaging unit 152 is fully inserted into the opening 880 is provided by the distal end 660 contacting a shoulder 1120 of coupler 154.
- the imaging unit 152 and coupler 154 can be separated by pushing button 580, which moves the locking member 600 out of the notch 620, and pulling the imaging unit 152 away from the coupler 154.
- Figures 6 and 7 illustrate only one example of the many ways that the imaging unit 152 and coupler 154 may be mated together.
- the imaging unit 152 also includes a handle 780 proximal to the body portion 180.
- the handle 780 may include grooves 800 to make it easier for a user to grip the imaging unit 152 though the drape 400 that can be extended over the imaging unit 152 in a manner described below.
- the image sensor 156 and circuitry 560 may be mounted in the body portion 180 of the imaging unit 152 in any of a number of ways.
- the image sensor 156 may be mounted via pins or screws 840a and 840b, and circuitry 560 may be mounted on a circuit board supported within body portion 180.
- One or more wires may be used to interconnect the circuitry 560 with the cable 260.
- the focal length between the image sensor 156 and the lens 200 of imaging unit 152 may be adjusted. In the system shown in Figures 6-7, this is accomplished via a mechanism that is not covered by the condom-like drape 400, thereby making it easier to focus the system and lessening the likelihood that the drape 400 will be damaged due to manipulation of the focusing mechanism. It should be appreciated, however, that the focal length adjustment can be accomplished in any number of ways.
- the refractive lens 200 is disposed in the imaging unit 152, rather than in the coupler 154.
- the focusing mechanism includes elements disposed in the imaging unit 152, as well as in the coupler 154.
- placement of the lens 200 within the imaging unit 152, rather than in the coupler 154 provides at least one significant advantage. That is, the cost of the coupler 154 may be reduced significantly below the cost of coupling devices that include lenses, thereby making it commercially practicable to use a new, sterile coupler each time the imaging system is used, rather than repeatedly sterilizing and reusing the same coupling device should sterilization be required.
- the distal end 660 of the imaging unit 152 includes a primary cylinder 760, in which a spring 680 and a cylindrical lens holder 220 are disposed.
- Lens holder 220 supports the lens 200 in front of an imaging axis of image sensor 156.
- Lens holder 220 (and lens 200) can be moved within primary cylinder 760 either toward or away from distal end 660 of the imaging unit 152 so as to adjust the focal length between the image sensor 156 and the lens 200.
- Spring 680 biases lens holder 220 toward distal end 660.
- the position of lens holder 220 within primary cylinder 760 can be adjusted, however, through manipulation of a focusing mechanism on the coupler 154 as discussed below. It should be appreciated that the present intention is not limited in this respect and that a camera including a lens that does not require focussing may be employed.
- the imaging unit 152 further includes an outer cylinder 720, including a spirally ramped upper edge 960, which surrounds the primary cylinder 760.
- Outer cylinder 720 is movable with respect to primary cylinder 760 either toward or away from the distal end 660 of imaging unit 152.
- Outer cylinder 720 is comiected to the lens holder 220 via a pin 700.
- Pin 700 extends through a slot 920 which extends a short distance along a length of the primary cylinder 760.
- lens holder 220, outer cylinder 720 and pin 700 move as a single unit, with respect to primary cylinder 760, either toward or away from the distal end 660 of imaging unit 152.
- the mamier in which this unit interacts with the focusing mechanism disposed on coupler 154 is described below in connection with Figures 8a-8b.
- Figures 6 and 7 show an exemplary implementation of the coupler 154.
- the coupler 154 can be constructed in any of a number of ways to achieve the desired goal of enabling the imaging unit 152 to be coupled to the scope 150.
- the coupler 154 includes a main body 500 (including a proximal portion 500a and a distal portion 500b), a focusing ring 480, a light-penetrable window 940, a scope mounting portion 420 (including inner ring 420a and outer ring 420b) and the condomlike drape 400.
- the components constituting the main body 500, focusing ring 480 and scope-mounting portion 420 may be made of any suitable material and may be affixed together in any suitable manner.
- the coupler 154 is a disposable device, the coupler 154 is preferably formed from inexpensive components.
- the main body 500 may be formed by inserting the distal portion 500b within the focusing ring 480, and then affixing together the proximal and distal portions 500a and 500b. Scope mounting portion 420 may be affixed to distal portion 500b.
- Main body 500 has an outer surface 520 between a distal end 1080 and a proximal end 1100 of the coupler 154.
- a channel 440 extends about a perimeter of the outer surface 520 between the focusing ring 480 and the proximal end 1100.
- a sterile barrier may be established between the sterile operating environment including the scope 150, and a non-sterile environment including the imaging unit 152.
- a sterile barrier is established by coupling the distal end 660 of the imaging unit 152 to the coupler 154, and providing a hermetic seal between the components of the coupler 120 that separate the sterile and non-sterile environments.
- a light-penetrable window 940 is hermetically sealed between the distal end 1080 and the proximal end 1100 of the coupler 154 to establish a sterile barrier therebetween.
- Window 940 may be made of glass, plastic, or any other suitable material through which light can pass from the scope 150 to the image sensor 156 (via lens 200) to generate a suitable image.
- the coupler 154 also includes the condom-like drape 400.
- the condom-like drape 400 may be made of any material that is suitable for creating a sterile barrier between a sterile environment and a non-sterile environment.
- the condom-like drape may be made of a non-porous latex or plastic material.
- the drape 400 may be extended to cover some or all of imaging unit 152 and cable 260.
- the condom-like drape 400 may be hermetically sealed to the outer surface 520 of coupler 154.
- the condom-like drape 400 does not intercept the optical viewing axis 190 of the imaging system. As mentioned above, this is advantageous in that the drape 400 need not be provided with a window that must be aligned with the optical viewing axis 190, and the drape 400 does not interfere with the quality of the image presented on the monitor 460. It should be appreciated that the function performed by the condom-like drape 400 can be achieved in any of numerous ways. For example, a protective drape can be provided that is more rigid than the condom-like drape 400 depicted in the drawings.
- the condom-like drape 400 is substantially tubular in form and is open on its distal and proximal ends.
- the distal end 210 of the condom-like drape 400 is attached to the outer surface 520 (within channel 440) of the coupler 120.
- this attachment can be accomplished using a hermetic seal (e.g., via an O-ring 540) to maintain the separation between the sterile and non- sterile environments.
- the condom-like drape 400 can be provided in a rolled-up form attached to the coupler 154. After the coupler 154 is mated with to the imaging unit 152 as described above, the condom-like drape 400 can be unrolled to cover the non-sterile imaging unit 152.
- the drape 400 can be used in conjunction with coupler 154 without requiring the user to align the drape 400, or a window portion thereof, between the eyepiece 158 of the scope 150 and the coupler 154, and without having the drape 400 intercept the optical viewing axis 190 of the imaging system.
- a drape is optional.
- Figures 6 and 7 illustrate one example of a technique that may be used to mate the scope 150 with the coupler 154. It should be appreciated that numerous other suitable mating techniques can be employed.
- the scope 150 is mated with the coupler 154 by inserting the eyepiece 158 into an opening 380 at the distal end 1080 of the coupler 154. Opening 380 may be formed by the inner and outer rings 420a-420b of the scope mounting portion 420.
- the inner and outer rings 420a-420b form equal diameter openings, and inner ring 420a is movable with respect to outer ring 420b.
- a spring biases the inner ring 420a so that its center is forced to be offset from the center of the outer ring 420b unless a user activates a lever (not shown) to cause the centers of the two rings to align with one another.
- the user activates the lever so that the centers of the rings 420a-420b align with one another and inserts the eyepiece 158 through both rings.
- the user then can release the lever so that the spring (not shown) causes the center of ring 420a to become offset from the center of ring 420b.
- the diameter of the eyepiece 158 is only slightly smaller than the diameter of each of rings 420a and 420b, when the centers of the rings are offset from one another, the eyepiece 158 will be locked within the scope mounting portion 420 of the coupler 154.
- the eyepiece 158 may be separated from the scope mounting portion 420 by pressing the lever to realign the centers of rings 420a and 420b and pulling the scope 150 away from the coupler 154.
- the coupler 154 is shown as being mated directly with the eyepiece 158 of the scope 150.
- the scope 150 (or other image-producing scope) may alternatively be mated indirectly with the coupler 154.
- the scope 150 may be mated with the coupler 154 via one or more additional coupling devices.
- a focusing mechanism can be employed that serves to adjust the focal length between the lens 200 and image sensor 156 in the imaging unit 152.
- a focusing ring 480 is provided on the coupler 154 to perform this focal length adjustment.
- the focusing ring 480 is disposed distally of the distal end 210 of the condom-like drape 400, so that after the drape 400 is extended to cover some or all of the imaging unit 152 and cable 260, the focusing ring 480 is not covered by the drape 400 and may be manipulated by a user to adjust the focal length between the lens 200 and the image sensor 158 without also having to manipulate the drape 400.
- this feature makes focusing ring 480 relatively easy for the user to manipulate to achieve sharp focusing, and reduces the risk of damage to drape 400.
- FIG. 7 An illustrative example of a linkage assembly for mechanically coupling the focusing ring 480 on the coupler 154 to the imaging unit 152 to adjust the focal length between the lens 200 and image sensor 158 is shown in Figures 7, 8a and 8b. It should be appreciated that numerous other implementations are possible.
- the distal portion 500b of the main body portion 500 of coupler 154 has an annular groove 1000. Annular groove 1000 may be covered by the focusing ring 480, so that it is not visible from the outside of coupler 154.
- a finger 980 extends inwardly from the focusing ring 480 through the annular groove 1000, so that when the focusing ring 480 is rotated about the main body portion 500, finger 980 slides within the annular groove 1000.
- a lower surface 1200 of finger 980 contacts a portion of a spiraling ramp surface 960 on the outer cylinder 720.
- pin 700 may be connected between the outer cylinder 720 and the cylindrical lens holder 220 through the slot 920, which extends along the length of the primary cylinder 760, so that the outer cylinder 720 and lens holder 220 do not rotate with respect to the primary cylinder 760.
- the focusing ring 480 can rotate fieely about the primary cylinder 760, limited only by the movement of the finger 980 within the annular groove 1000.
- Figures 8a and 8b illustrate the focusing mechanism at its two extreme focusing positions, with Figure 8a illustrating the lens 200 at its closest position to the image sensor 156 and Figure 8b illustrating the lens 200 at its furthest position from the image sensor 156.
- Figure 8a when the lens 200 is at its closest position to the image sensor 156, the spring 680 is fully compressed, bottom surface 1200 of finger 980 is in contact with a point 1060 near the top of the spiraling ramped surface 960, and the finger 980 is in a first position with respect to the primary cylinder 760.
- the imaging unit 152 includes a single body portion 180 in which both the image sensor 156 (and associated circuitry 560) and the refractive lens 200 (and associated components such as the lens holder 220, the spring 680, and the cylinders 720 and 760) are disposed. It should be appreciated, however, that various components of the imaging unit 152 may alternatively be distributed among two or more separate housings that may be mated together to form the imaging unit 152. An illustrative example of an imaging system configured in this manner is shown in Figures 9 and 10.
- the imaging unit 152 to be mated with the coupler 154 may include a first housing 180a in which the refractive lens (and associated components) is disposed, and a second housing 180b in which the image sensor 140 (and associated circuitry (not shown)) is disposed.
- the second housing 180b is the housing of a camera head 152b (e.g., a standard C-mount camera head), and the first housing 180a is the housing of an adapter 152a for adapting the camera head 152b for use with the coupler 154.
- the adapter 152a is mated with the camera head 152b (as discussed below), the adapter 152a and the camera head 152b together form a composite imaging unit 152 which is similar to the imaging unit 152 described above in connection with Figures 6-7.
- each of the housings 180a-180b may take on any of a number of alternative forms.
- the housing 180b may alternatively be the housing of a standard V-mount camera head, or any other device in which an image sensor is disposed, and the housing 180a, may be configured to be mated with the same.
- the imaging unit 152 may further include additional housings, including only one or two housings.
- the imaging unit 152 may further include one or more housings disposed between the housings 180a and 180b or between the housing 180a and the coupler 154.
- Such an additional housing may exist, for example, in the form of a coupling device that couples together the housings 180a and 180b or the housing 180a and the coupler 154.
- the imaging unit actually employed may be any of numerous devices or combinations of devices capable of receiving an optical image along an imaging axis.
- the term "imaging unit" is not intended to be limiting. Rather, it is intended to refer to any device or combination of devices capable of performing an imaging function.
- the coupler 154 is shown as being mated directly with the distal end 660 of the imaging unit 152, it should be appreciated that the imaging unit 152 may alternatively be mated indirectly with the coupler 154.
- the imaging unit 152 in whatever form, may be mated with the coupler 154 via one or more additional coupling devices.
- the operational interface between the adapter 152a and the coupler 154 is identical in most respects to the operational interface between the imaging unit 152 and the coupler 154 described above in connection with Figures 6-8.
- Corresponding components in the two embodiments have therefore been labeled with identical reference numerals, and reference may be made to the description of the embodiment of Figures 6-8 for an in-depth understanding of the operational interface between the adapter 152a and the coupler 154 of the embodiment of Figures 9-10.
- the camera head 152b may, for example, be a standard C- mount camera head.
- the camera head 152b may include a threaded, female connector 1280 formed at a distal end 1320 thereof.
- the adapter 152a may include a threaded, male connector 1260 formed at a proximal end 1360 thereof.
- the image sensor 156 may be disposed adjacent the distal end 1320 of the camera head 152b so that, when the male connector 1260 of the adapter 152a is threaded into the female connector 1280 of the camera head 152b, the image sensor 156 is disposed adjacent an opening 1380 at the proximal end 1360 of the adapter 152a.
- the image sensor 156 is therefore disposed further from the distal end 660 of the imaging unit 152 than it is in the system of Figures 6-7.
- an annular cavity 1220 is formed within the housing 180a to provide an optical pathway between the refractive lens 200 and the image sensor 156 along which an image produced by the scope 150 can be focused onto the image sensor 156 via the lens 200.
- the cavity 1220 may be formed, for example, by reducing a width of an annular shoulder 1340 ( Figure 10) supporting one end of the spring 680 to be narrower than in the embodiment of Figures 6-7.
- the button 580 is disposed on the adapter 152a of the imaging unit 152, and is therefore disposed distally of the image sensor 156 in this system, rather than proximally of the image sensor 156 as in the system of Figures 6-7.
- the button 580 may be shortened as compared to the system of Figures 6-7.
- the pin 820 about which the button 580 pivots may be disposed within a small cavity 1240 adjacent the proximal end 1360 of the adapter 152a, rather than being disposed proximally of the image sensor 156 as in the system of Figures 6-7.
- the button 580 and locking member 600 represent only one example of numerous mechanisms that can be used to interconnect the imaging unit 152 with the coupler 154, and that the imaging unit 152 may be mated with the coupler 154 in different ways.
- the imaging unit 152 may not include a button such as the button 580 or a locking member such as the locking member 600 at all, and may instead provide a different mechanism for mating the imaging unit 152 with the coupler 154.
- the imaging unit 152 that is formed when the adapter 152a is mated with the camera head 152b can be made identical in all respects to the imaging unit 152 of embodiment of Figures 6-8. Additionally, by properly adjusting the refractive index of the lens 200 to account for the increased distance between the distal end 660 and the image sensor 156 in the embodiment of Figures 9-10 as compared to the embodiment of Figures 6-8, the imaging unit 152 of Figures 9-10 can also be made to mimic the functional characteristics of the imaging unit 152 of Figures 6-8 as well.
- the adapter 152a of Figures 9-10 therefore enables a standard camera head (e.g., the camera head 152b) to be adapted for use with the inventive coupler 154 described herein in the same manner as in the embodiment of the imaging unit 152 described in connection with Figures 6-8. Therefore, one already in possession of a camera head 152b (e.g., a standard C-mount or V-mount camera head) may simply purchase the adapter 152a (which does not include an image sensor) for use with the coupler 154, rather than purchasing the imaging unit 152 of Figures 6-8 (which additionally includes an image sensor) for use therewith.
- a standard camera head e.g., the camera head 152b
- the adapter 152a which does not include an image sensor
- the imaging unit 152 of Figures 6-8 which additionally includes an image sensor
- the adapter 152a described herein is configured for use with a specific type of coupler (i.e., the coupler 154). However, it should be appreciated that the adapter 152a may alternatively be configured for use with other types of devices or couplers.
- any suitable type of camera can be used to take such images, as the present invention is not limited to the above-described examples. Additional examples of cameras that can be suitable for use in such a system are described in a series of Applicant's earlier-filed U.S. patent applications, including provisional applications 60/054,197; 60/054,198; and 60/121,382, as well as regular U.S. patent applications nos. 09/126,368; 09/382,496; and 09/513,673, each of which is incorporated herein by reference. However, the present invention is not limited to using such camera systems.
- the apparatus 20 and method of use described herein can be used in connection with inspection and/or maintenance of numerous types of objects, as the present invention is not limited in this respect.
- the apparatus 20 and method of use described herein can be used in connection with inspection and/or maintenance of: aircraft (e.g., airplanes and helicopters), boats, automobiles, trucks, military equipment (e.g., tanks, weapons, etc.) and space vehicles; engines and related components, including aircraft engines, ship engines, motor vehicle engines and turbine engines; structural components of vehicles, such as airframes, hulls, chassis and automobile frames and other such components; structures such as buildings, roads, bridges, tumiels, etc.; facilities such as manufacturing plants and power plants including the components or objects relating to such facilities; mechanical components; systems; parts; inventory; products; processes; fluids and flows; and chemicals.
- aircraft e.g., airplanes and helicopters
- boats e.g., automobiles, trucks, military equipment (e.g., tanks, weapons, etc.) and space vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Aviation & Aerospace Engineering (AREA)
- Marketing (AREA)
- Game Theory and Decision Science (AREA)
- General Business, Economics & Management (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Operations Research (AREA)
- Multimedia (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001289056A AU2001289056A1 (en) | 2000-09-11 | 2001-09-12 | System and method for obtaining and utilizing maintenance information |
EP01968842A EP1332443A2 (en) | 2000-09-11 | 2001-09-12 | System and method for obtaining and utilizing maintenance information |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23191300P | 2000-09-11 | 2000-09-11 | |
US60/231,913 | 2000-09-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002023403A2 true WO2002023403A2 (en) | 2002-03-21 |
WO2002023403A3 WO2002023403A3 (en) | 2003-03-13 |
Family
ID=22871121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/028587 WO2002023403A2 (en) | 2000-09-11 | 2001-09-12 | System and method for obtaining and utilizing maintenance information |
Country Status (4)
Country | Link |
---|---|
US (2) | US6529620B2 (en) |
EP (1) | EP1332443A2 (en) |
AU (1) | AU2001289056A1 (en) |
WO (1) | WO2002023403A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2394808A (en) * | 2002-11-01 | 2004-05-05 | Canon Europa Nv | E-Maintenance System |
WO2004066606A2 (en) * | 2003-01-24 | 2004-08-05 | Jarvis Facilities Ltd | Work site monitoring |
GB2417091A (en) * | 2004-08-03 | 2006-02-15 | Advanced Analysis And Integrat | Aircraft test and measuring instruments |
EP2388742A3 (en) * | 2004-11-05 | 2012-03-28 | Hitachi Ltd. | Remote maintenance system, monitoring center computer used for the same, monitoring system and method of communication for maintenance |
Families Citing this family (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7337389B1 (en) | 1999-12-07 | 2008-02-26 | Microsoft Corporation | System and method for annotating an electronic document independently of its content |
EP1332443A2 (en) * | 2000-09-11 | 2003-08-06 | Pinotage, LLC | System and method for obtaining and utilizing maintenance information |
US7765082B2 (en) * | 2000-09-11 | 2010-07-27 | Axiam, Incorporated | System for optimal alignment of a shaft of a gas turbine |
US7565257B2 (en) * | 2000-09-11 | 2009-07-21 | Axiam, Incorporated | System for optimal alignment of a bearing seal on a shaft of a gas turbine |
US6898547B1 (en) * | 2000-09-11 | 2005-05-24 | Axiam, Incorporated | Rotor assembly system and method |
US20030215128A1 (en) * | 2001-09-12 | 2003-11-20 | Pinotage Llc | System and method for obtaining and utilizing maintenance information |
US7050041B1 (en) * | 2000-10-30 | 2006-05-23 | Hewlett-Packard Development Company, L.P. | Pointing device with a cable storage winding mechanism |
US20020087319A1 (en) * | 2001-01-04 | 2002-07-04 | Stephenson Marc C. | Portable electronic voice recognition device capable of executing various voice activated commands and calculations associated with aircraft operation by means of synthesized voice response |
US8564417B2 (en) | 2001-01-15 | 2013-10-22 | Ron Craik | System and method for storing and retrieving equipment inspection and maintenance data |
US8198986B2 (en) * | 2001-11-13 | 2012-06-12 | Ron Craik | System and method for storing and retrieving equipment inspection and maintenance data |
US7076532B2 (en) * | 2001-01-15 | 2006-07-11 | Ron Craik | System and method for storing and retrieving equipment inspection and maintenance data |
US6574537B2 (en) * | 2001-02-05 | 2003-06-03 | The Boeing Company | Diagnostic system and method |
US7350159B2 (en) * | 2001-05-08 | 2008-03-25 | Snap-On Incorporated | Integrated diagnostic system |
US6951536B2 (en) * | 2001-07-30 | 2005-10-04 | Olympus Corporation | Capsule-type medical device and medical system |
US10185455B2 (en) | 2012-10-04 | 2019-01-22 | Zonar Systems, Inc. | Mobile computing device for fleet telematics |
US8810385B2 (en) | 2001-09-11 | 2014-08-19 | Zonar Systems, Inc. | System and method to improve the efficiency of vehicle inspections by enabling remote actuation of vehicle components |
US20150170521A1 (en) | 2001-09-11 | 2015-06-18 | Zonar Systems, Inc. | System and method to enhance the utility of vehicle inspection records by including route identification data in each vehicle inspection record |
US7557696B2 (en) | 2001-09-11 | 2009-07-07 | Zonar Systems, Inc. | System and process to record inspection compliance data |
US8400296B2 (en) | 2001-09-11 | 2013-03-19 | Zonar Systems, Inc. | Method and apparatus to automate data collection during a mandatory inspection |
US9563869B2 (en) | 2010-09-14 | 2017-02-07 | Zonar Systems, Inc. | Automatic incorporation of vehicle data into documents captured at a vehicle using a mobile computing device |
US20110068954A1 (en) | 2006-06-20 | 2011-03-24 | Zonar Systems, Inc. | Method and apparatus to collect object identification data during operation of a vehicle and analysis of such data |
US8972179B2 (en) | 2006-06-20 | 2015-03-03 | Brett Brinton | Method and apparatus to analyze GPS data to determine if a vehicle has adhered to a predetermined route |
US6671646B2 (en) * | 2001-09-11 | 2003-12-30 | Zonar Compliance Systems, Llc | System and process to ensure performance of mandated safety and maintenance inspections |
US11341853B2 (en) | 2001-09-11 | 2022-05-24 | Zonar Systems, Inc. | System and method to enhance the utility of vehicle inspection records by including route identification data in each vehicle inspection record |
DE10153151A1 (en) * | 2001-10-27 | 2003-05-15 | Airbus Gmbh | Diagnostic system and diagnostic procedures to support aircraft maintenance |
US20040206818A1 (en) * | 2001-12-03 | 2004-10-21 | Loda David C. | Engine-mounted microserver |
US8082317B2 (en) * | 2002-02-26 | 2011-12-20 | United Technologies Corporation | Remote tablet-based internet inspection system |
WO2003077073A2 (en) * | 2002-03-08 | 2003-09-18 | Fleettrakker, L.L.C. | Equipment tracking system and method |
US6885921B1 (en) * | 2002-05-09 | 2005-04-26 | Grace H. Farmer | Method and apparatus for managing aircraft maintenance records |
US20140207514A1 (en) * | 2013-01-22 | 2014-07-24 | General Electric Company | Inspection data provision |
US6925357B2 (en) * | 2002-07-25 | 2005-08-02 | Intouch Health, Inc. | Medical tele-robotic system |
US20040162637A1 (en) | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
JP4323149B2 (en) * | 2002-09-30 | 2009-09-02 | オリンパス株式会社 | Electric bending endoscope |
AU2003284970A1 (en) * | 2002-10-25 | 2004-05-13 | J. Bruce Cantrell Jr. | Digital diagnosti video system for manufacturing and industrial process |
DE20220652U1 (en) * | 2002-11-05 | 2004-04-22 | Quiss Gmbh | Device for recognizing a structure to be applied to a substrate |
AU2003286856A1 (en) * | 2002-11-07 | 2004-06-03 | Snap-On Technologies, Inc. | Vehicle data stream pause on data trigger value |
US6751536B1 (en) * | 2002-12-04 | 2004-06-15 | The Boeing Company | Diagnostic system and method for enabling multistage decision optimization for aircraft preflight dispatch |
EP1618736A2 (en) * | 2003-01-29 | 2006-01-25 | Everest-VIT, Inc. | Remote video inspection system |
US6842713B1 (en) * | 2003-02-24 | 2005-01-11 | The United States Of America As Represented By The Secretary Of The Navy | Rapid diagnostic multi data retrieval apparatus and method for using the same |
US7668744B2 (en) * | 2003-07-31 | 2010-02-23 | The Boeing Company | Method and system for conducting fleet operations |
US20050043870A1 (en) * | 2003-08-22 | 2005-02-24 | General Electric Company | Method and apparatus for recording and retrieving maintenance, operating and repair data for turbine engine components |
US6940426B1 (en) * | 2003-09-05 | 2005-09-06 | Ridgeback Systems Llc | Aircraft flight risk measuring system and method of operation |
SE527004C2 (en) * | 2003-11-26 | 2005-12-06 | Kvaser Consultant Ab | Arrangement of distributed for simulation in distributed control systems eg in vehicles |
US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
SE528072C2 (en) * | 2004-01-16 | 2006-08-29 | Kvaser Consultant Ab | Device, unit and arrangement of one or more distributed systems for collecting operation or fault information |
US7844385B2 (en) * | 2004-01-28 | 2010-11-30 | United Technologies Corporation | Microserver engine control card |
US7167788B2 (en) * | 2004-01-30 | 2007-01-23 | United Technologies Corporation | Dual-architecture microserver card |
US20050223288A1 (en) * | 2004-02-12 | 2005-10-06 | Lockheed Martin Corporation | Diagnostic fault detection and isolation |
US20050240555A1 (en) * | 2004-02-12 | 2005-10-27 | Lockheed Martin Corporation | Interactive electronic technical manual system integrated with the system under test |
US7801702B2 (en) * | 2004-02-12 | 2010-09-21 | Lockheed Martin Corporation | Enhanced diagnostic fault detection and isolation |
US7584420B2 (en) * | 2004-02-12 | 2009-09-01 | Lockheed Martin Corporation | Graphical authoring and editing of mark-up language sequences |
JP4306510B2 (en) * | 2004-03-29 | 2009-08-05 | 三菱自動車エンジニアリング株式会社 | Vehicle inspection management system |
JP4270017B2 (en) * | 2004-04-15 | 2009-05-27 | 三菱自動車工業株式会社 | Vehicle inspection management system |
US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
US7617029B2 (en) * | 2004-07-19 | 2009-11-10 | United Technologies Corporation | System and method for fault code driven maintenance system |
US20060120181A1 (en) * | 2004-10-05 | 2006-06-08 | Lockheed Martin Corp. | Fault detection and isolation with analysis of built-in-test results |
US20060085692A1 (en) * | 2004-10-06 | 2006-04-20 | Lockheed Martin Corp. | Bus fault detection and isolation |
US20060132291A1 (en) * | 2004-11-17 | 2006-06-22 | Dourney Charles Jr | Automated vehicle check-in inspection method and system with digital image archiving |
US20080052281A1 (en) * | 2006-08-23 | 2008-02-28 | Lockheed Martin Corporation | Database insertion and retrieval system and method |
US7427025B2 (en) * | 2005-07-08 | 2008-09-23 | Lockheed Marlin Corp. | Automated postal voting system and method |
WO2007033326A2 (en) * | 2005-09-14 | 2007-03-22 | Welch Allyn, Inc. | Medical apparatus comprising and adaptive lens |
US20070078618A1 (en) * | 2005-09-30 | 2007-04-05 | Honeywell International, Inc. | Method and system for enabling automated data analysis of multiple commensurate nondestructive test measurements |
US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
US8027095B2 (en) * | 2005-10-11 | 2011-09-27 | Hand Held Products, Inc. | Control systems for adaptive lens |
US20070156496A1 (en) * | 2005-12-02 | 2007-07-05 | Avery Robert L | Methods and systems for managing aircraft maintenance and material supply |
US7769499B2 (en) * | 2006-04-05 | 2010-08-03 | Zonar Systems Inc. | Generating a numerical ranking of driver performance based on a plurality of metrics |
DE202006006268U1 (en) * | 2006-04-12 | 2006-06-14 | Branofilter Gmbh | Device for detachable fastening of dust filter bag in dust evacuation equipment has flange part which is pluggable to adaptor plate radially outside of annular seal and is pivotally connected to adaptor plate |
US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
US9230437B2 (en) | 2006-06-20 | 2016-01-05 | Zonar Systems, Inc. | Method and apparatus to encode fuel use data with GPS data and to analyze such data |
US20130164713A1 (en) | 2011-12-23 | 2013-06-27 | Zonar Systems, Inc. | Method and apparatus for gps based slope determination, real-time vehicle mass determination, and vehicle efficiency analysis |
US10056008B1 (en) | 2006-06-20 | 2018-08-21 | Zonar Systems, Inc. | Using telematics data including position data and vehicle analytics to train drivers to improve efficiency of vehicle use |
US9412282B2 (en) | 2011-12-24 | 2016-08-09 | Zonar Systems, Inc. | Using social networking to improve driver performance based on industry sharing of driver performance data |
US20080046167A1 (en) * | 2006-07-10 | 2008-02-21 | Small Gregory J | Methods and systems for providing a resource management view for airline operations |
US20080010107A1 (en) * | 2006-07-10 | 2008-01-10 | Small Gregory J | Methods and systems for providing a global view of airline operations |
US7747382B2 (en) * | 2006-07-10 | 2010-06-29 | The Boeing Company | Methods and systems for real-time enhanced situational awareness |
US7539594B2 (en) * | 2006-09-26 | 2009-05-26 | Axiam, Incorporated | Method and apparatus for geometric rotor stacking and balancing |
US20080114507A1 (en) * | 2006-11-10 | 2008-05-15 | Ruth Robert S | System and method for situational control of mobile platform maintenance and operation |
US8027096B2 (en) * | 2006-12-15 | 2011-09-27 | Hand Held Products, Inc. | Focus module and components with actuator polymer control |
US7813047B2 (en) * | 2006-12-15 | 2010-10-12 | Hand Held Products, Inc. | Apparatus and method comprising deformable lens element |
US8645148B2 (en) * | 2006-12-29 | 2014-02-04 | The Boeing Company | Methods and apparatus providing an E-enabled ground architecture |
US7337058B1 (en) * | 2007-02-12 | 2008-02-26 | Honeywell International, Inc. | Engine wear characterizing and quantifying method |
US8396571B2 (en) * | 2007-03-19 | 2013-03-12 | United Technologies Corporation | Process and system for multi-objective global optimization of maintenance schedules |
US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
US8824731B2 (en) * | 2007-10-31 | 2014-09-02 | The Boeing Comapny | Image processing of apparatus condition |
US8571747B2 (en) * | 2007-12-06 | 2013-10-29 | The Boeing Company | System and method for managing aircraft maintenance |
US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
US8131509B2 (en) * | 2008-03-23 | 2012-03-06 | United Technologies Corporation | Method of system design for failure detectability |
US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
US8054182B2 (en) * | 2008-04-16 | 2011-11-08 | The Johns Hopkins University | Remotely directed vehicle inspection method and apparatus |
US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
US20090266150A1 (en) * | 2008-04-23 | 2009-10-29 | Ari Novis | Sensor criticality determination process |
US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
US20100048202A1 (en) * | 2008-08-25 | 2010-02-25 | Beacham Jr William H | Method of communicating with an avionics box via text messaging |
US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
US8095265B2 (en) * | 2008-10-06 | 2012-01-10 | International Business Machines Corporation | Recording, storing, and retrieving vehicle maintenance records |
US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
FR2938088B1 (en) * | 2008-11-03 | 2010-11-12 | Eurocopter France | METHOD FOR SECURING FLIGHT DATA AND SYSTEM FOR CARRYING OUT SAID METHOD |
US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
JP2010140256A (en) * | 2008-12-11 | 2010-06-24 | Toshiba Corp | Information processor and diagnostic result notification method |
US8073294B2 (en) * | 2008-12-29 | 2011-12-06 | At&T Intellectual Property I, L.P. | Remote optical fiber surveillance system and method |
US9992227B2 (en) * | 2009-01-07 | 2018-06-05 | Ncr Corporation | Secure remote maintenance and support system, method, network entity and computer program product |
US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
US9157723B2 (en) | 2009-01-30 | 2015-10-13 | Axiam, Inc. | Absolute diameter measurement arm |
US8219353B2 (en) * | 2009-01-30 | 2012-07-10 | Axiam, Inc. | Absolute diameter measurement arm |
US8897920B2 (en) | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
US8509963B1 (en) | 2009-07-23 | 2013-08-13 | Rockwell Collins, Inc. | Remote management of aircraft computer systems |
US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
EP2378468A1 (en) * | 2009-11-10 | 2011-10-19 | Airbus Operations GmbH | Platform for aircraft maintenance services and asset management |
US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
US10665040B2 (en) | 2010-08-27 | 2020-05-26 | Zonar Systems, Inc. | Method and apparatus for remote vehicle diagnosis |
US10600096B2 (en) | 2010-11-30 | 2020-03-24 | Zonar Systems, Inc. | System and method for obtaining competitive pricing for vehicle services |
TW201216913A (en) * | 2010-10-22 | 2012-05-01 | Three In One Ent Co Ltd | An endoscope with acoustic wave detection and voiceprint comparison |
US10706647B2 (en) | 2010-12-02 | 2020-07-07 | Zonar Systems, Inc. | Method and apparatus for implementing a vehicle inspection waiver program |
US10431020B2 (en) | 2010-12-02 | 2019-10-01 | Zonar Systems, Inc. | Method and apparatus for implementing a vehicle inspection waiver program |
US8914184B2 (en) | 2012-04-01 | 2014-12-16 | Zonar Systems, Inc. | Method and apparatus for matching vehicle ECU programming to current vehicle operating conditions |
US8736419B2 (en) | 2010-12-02 | 2014-05-27 | Zonar Systems | Method and apparatus for implementing a vehicle inspection waiver program |
US9527515B2 (en) | 2011-12-23 | 2016-12-27 | Zonar Systems, Inc. | Vehicle performance based on analysis of drive data |
US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
US9272796B1 (en) | 2011-01-11 | 2016-03-01 | Chudy Group, LLC | Automatic drug packaging machine and package-less verification system |
US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
CN104898652B (en) | 2011-01-28 | 2018-03-13 | 英塔茨科技公司 | Mutually exchanged with a moveable tele-robotic |
US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
US20120308984A1 (en) * | 2011-06-06 | 2012-12-06 | Paramit Corporation | Interface method and system for use with computer directed assembly and manufacturing |
GB201109858D0 (en) | 2011-06-13 | 2011-07-27 | Lewis Terry | Method and system for aircraft inspections |
CN102343983A (en) * | 2011-07-07 | 2012-02-08 | 中国国际航空股份有限公司 | Airplane APU (Auxiliary Power Unit) performance detecting method |
CN102320382A (en) * | 2011-07-07 | 2012-01-18 | 中国国际航空股份有限公司 | Aircraft performance detection method |
US11401045B2 (en) | 2011-08-29 | 2022-08-02 | Aerovironment, Inc. | Camera ball turret having high bandwidth data transmission to external image processor |
US9288513B2 (en) | 2011-08-29 | 2016-03-15 | Aerovironment, Inc. | System and method of high-resolution digital data image transmission |
US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
FR2987443B1 (en) * | 2012-02-24 | 2014-03-07 | Snecma | DEVICE FOR DETECTING ANOMALIES BY ACOUSTIC ANALYSIS OF AN AIRCRAFT TURBOMACHINE |
US8849475B1 (en) * | 2012-04-04 | 2014-09-30 | The Boeing Company | Systems and method for managing sensors in a vehicle |
US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
US20130288210A1 (en) * | 2012-04-30 | 2013-10-31 | Andrew James Stewart | Integrated maintenance management system |
WO2013176758A1 (en) | 2012-05-22 | 2013-11-28 | Intouch Technologies, Inc. | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
US9002571B1 (en) * | 2012-08-23 | 2015-04-07 | Rockwell Collins, Inc. | Automated preflight walk around tool |
US9424696B2 (en) | 2012-10-04 | 2016-08-23 | Zonar Systems, Inc. | Virtual trainer for in vehicle driver coaching and to collect metrics to improve driver performance |
US8930068B1 (en) * | 2013-07-15 | 2015-01-06 | American Airlines, Inc. | System and method for managing instances of damage within a transportation system |
US9530057B2 (en) | 2013-11-26 | 2016-12-27 | Honeywell International Inc. | Maintenance assistant system |
US9558547B2 (en) | 2014-01-09 | 2017-01-31 | The Boeing Company | System and method for determining whether an apparatus or an assembly process is acceptable |
FR3019898B1 (en) * | 2014-04-11 | 2018-06-01 | Safran Aircraft Engines | METHOD AND DEVICE FOR ENDOSCOPY OF A REMOTE AIRCRAFT ENGINE |
US9911251B2 (en) * | 2014-12-15 | 2018-03-06 | Bosch Automotive Service Solutions Inc. | Vehicle diagnostic system and method |
US10139795B2 (en) * | 2015-10-19 | 2018-11-27 | The Boeing Company | System and method for environmental control system diagnosis and prognosis |
US9785919B2 (en) | 2015-12-10 | 2017-10-10 | General Electric Company | Automatic classification of aircraft component distress |
JP6493264B2 (en) * | 2016-03-23 | 2019-04-03 | 横河電機株式会社 | Maintenance information sharing apparatus, maintenance information sharing method, maintenance information sharing program, and recording medium |
JP2018106654A (en) * | 2016-12-28 | 2018-07-05 | 横河電機株式会社 | Maintenance management device, maintenance management method, maintenance management program, and recording medium |
US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
FR3068098B1 (en) * | 2017-06-26 | 2019-08-23 | Safran Landing Systems | METHOD FOR MEASURING BRAKE DISC WEAR OF AN AIRCRAFT |
US10483007B2 (en) | 2017-07-25 | 2019-11-19 | Intouch Technologies, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
US10650340B2 (en) * | 2017-09-08 | 2020-05-12 | Accenture Global Solutions Limited | Tracking and/or analyzing facility-related activities |
JP6917844B2 (en) * | 2017-09-20 | 2021-08-11 | 株式会社東芝 | Work support system, work support method and work support program |
US10847048B2 (en) * | 2018-02-23 | 2020-11-24 | Frontis Corp. | Server, method and wearable device for supporting maintenance of military apparatus based on augmented reality using correlation rule mining |
US10617299B2 (en) | 2018-04-27 | 2020-04-14 | Intouch Technologies, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
FR3087755B1 (en) * | 2018-10-30 | 2022-03-04 | Safran | AIRCRAFT STRUCTURE DEFECT MONITORING METHOD AND SYSTEM |
CN111626147A (en) * | 2020-05-09 | 2020-09-04 | 西藏电建成勘院工程有限公司 | Geotechnical engineering drilling information acquisition and processing method and system |
CN112084430A (en) * | 2020-08-21 | 2020-12-15 | 广州汽车集团股份有限公司 | Dynamic geographical human information broadcasting device, system and method |
WO2022167971A1 (en) * | 2021-02-03 | 2022-08-11 | Engifab Srl | Device and method for inspecting an industrial vehicle |
IT202100002309A1 (en) * | 2021-02-03 | 2022-08-03 | Kiwitron S R L | DEVICE AND METHOD FOR INSPECTING AN INDUSTRIAL VEHICLE, FOR EXAMPLE A LIFT BASKET. |
US11860060B2 (en) | 2022-04-05 | 2024-01-02 | Rtx Corporation | Integrally bladed rotor analysis and repair systems and methods |
US12037918B2 (en) | 2022-04-05 | 2024-07-16 | Rtx Corporation | Systems and methods for parameterization of inspected bladed rotor analysis |
Family Cites Families (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1126036A (en) | 1955-05-10 | 1956-11-13 | Colposcope | |
US4644845A (en) | 1972-05-18 | 1987-02-24 | Garehime Jacob W Jr | Surveillance and weapon system |
US4046140A (en) | 1972-06-02 | 1977-09-06 | Born Grant R | Cervix photographic method |
CH573026A5 (en) | 1974-06-11 | 1976-02-27 | Kaiser Josef Ag Fahrzeugwerk | |
US4210133A (en) | 1975-10-21 | 1980-07-01 | Consejo Nacional De Ciencia Y Tecnologia | Vaginal microscope |
DE7833379U1 (en) | 1978-11-10 | 1979-02-15 | Storz, Karl, 7200 Tuttlingen | |
IL58599A0 (en) | 1978-12-04 | 1980-02-29 | United Technologies Corp | Method and apparatus for inspecting stator components of gas turbine engines |
US4759348A (en) | 1981-09-28 | 1988-07-26 | Cawood Charles David | Endoscope assembly and surgical instrument for use therewith |
US4575185A (en) | 1983-08-01 | 1986-03-11 | Combustion Engineering, Inc. | System for a fiber optic cable for remote inspection of internal structure of a nuclear steam generator |
US4611888A (en) | 1983-10-17 | 1986-09-16 | Mp Video, Inc. | Coupler for surgical endoscope and video camera |
JPH0221041Y2 (en) | 1983-11-08 | 1990-06-07 | ||
US4627436A (en) | 1984-03-01 | 1986-12-09 | Innoventions Biomedical Inc. | Angioplasty catheter and method for use thereof |
JPH0646977B2 (en) | 1984-06-09 | 1994-06-22 | オリンパス光学工業株式会社 | Measuring endoscope |
US4573452A (en) | 1984-07-12 | 1986-03-04 | Greenberg I Melvin | Surgical holder for a laparoscope or the like |
JPS6150546A (en) | 1984-08-20 | 1986-03-12 | 富士写真光機株式会社 | Endoscope |
JPH0644105B2 (en) | 1985-01-14 | 1994-06-08 | オリンパス光学工業株式会社 | Endoscope |
US4718417A (en) | 1985-03-22 | 1988-01-12 | Massachusetts Institute Of Technology | Visible fluorescence spectral diagnostic for laser angiosurgery |
US4816828A (en) | 1986-03-27 | 1989-03-28 | Feher Kornel J | Aircraft damage assessment and surveillance system |
DE3715417A1 (en) | 1986-05-13 | 1987-11-19 | Olympus Optical Co | SEMICONDUCTOR IMAGE GENERATION DEVICE, AND ENDOSCOPE HERE EQUIPPED WITH IT |
US4791479A (en) | 1986-06-04 | 1988-12-13 | Olympus Optical Co., Ltd. | Color-image sensing apparatus |
US4807025A (en) | 1986-10-23 | 1989-02-21 | Teruo Eino | Electronic endoscope apparatus |
US4738526A (en) | 1986-11-21 | 1988-04-19 | Autostudio Corporation | Auto-portrait photo studio |
JP2735101B2 (en) | 1986-12-08 | 1998-04-02 | オリンパス光学工業株式会社 | Imaging device |
JPS63197431A (en) | 1987-02-10 | 1988-08-16 | オリンパス光学工業株式会社 | Image pickup apparatus for endoscope |
US4736733A (en) | 1987-02-25 | 1988-04-12 | Medical Dynamics, Inc. | Endoscope with removable eyepiece |
US5016098A (en) | 1987-03-05 | 1991-05-14 | Fuji Optical Systems, Incorporated | Electronic video dental camera |
US5115307A (en) | 1987-03-05 | 1992-05-19 | Fuji Optical Systems | Electronic video dental camera |
JP2572394B2 (en) | 1987-03-19 | 1997-01-16 | オリンパス光学工業株式会社 | Electronic endoscope |
US4905082A (en) | 1987-05-06 | 1990-02-27 | Olympus Optical Co., Ltd. | Rigid video endoscope having a detachable imaging unit |
US4867138A (en) | 1987-05-13 | 1989-09-19 | Olympus Optical Co., Ltd. | Rigid electronic endoscope |
US4888639A (en) | 1987-05-22 | 1989-12-19 | Olympous Optical Co., Ltd. | Endoscope apparatus having integrated disconnectable light transmitting and image signal transmitting cord |
US4878113A (en) | 1987-08-11 | 1989-10-31 | Olympus Optical Co., Ltd. | Endoscope apparatus |
JPH0824668B2 (en) | 1987-09-14 | 1996-03-13 | オリンパス光学工業株式会社 | Electronic endoscopic device |
US4858001A (en) | 1987-10-08 | 1989-08-15 | High-Tech Medical Instrumentation, Inc. | Modular endoscopic apparatus with image rotation |
US5172225A (en) | 1987-11-25 | 1992-12-15 | Olympus Optical Co., Ltd. | Endoscope system |
US4893613A (en) | 1987-11-25 | 1990-01-16 | Hake Lawrence W | Endoscope construction with means for controlling rigidity and curvature of flexible endoscope tube |
US5021888A (en) | 1987-12-18 | 1991-06-04 | Kabushiki Kaisha Toshiba | Miniaturized solid state imaging device |
JPH0673517B2 (en) | 1988-02-04 | 1994-09-21 | オリンパス光学工業株式会社 | Electronic endoscope system |
US5111288A (en) | 1988-03-02 | 1992-05-05 | Diamond Electronics, Inc. | Surveillance camera system |
US4852131A (en) * | 1988-05-13 | 1989-07-25 | Advanced Research & Applications Corporation | Computed tomography inspection of electronic devices |
US5026368A (en) | 1988-12-28 | 1991-06-25 | Adair Edwin Lloyd | Method for cervical videoscopy |
US4905670A (en) | 1988-12-28 | 1990-03-06 | Adair Edwin Lloyd | Apparatus for cervical videoscopy |
US5143054A (en) | 1988-12-28 | 1992-09-01 | Adair Edwin Lloyd | Cervical videoscope with detachable camera unit |
JP2981556B2 (en) | 1989-02-28 | 1999-11-22 | 旭光学工業株式会社 | Endoscope tip |
GB8904535D0 (en) | 1989-02-28 | 1989-04-12 | Barcrest Ltd | Automatic picture taking machine |
DE3921233A1 (en) | 1989-06-28 | 1991-02-14 | Storz Karl Gmbh & Co | ENDOSCOPE WITH A VIDEO DEVICE AT THE DISTAL END |
JPH0327204U (en) | 1989-07-21 | 1991-03-19 | ||
US4979498A (en) | 1989-10-30 | 1990-12-25 | Machida Incorporated | Video cervicoscope system |
DE8914215U1 (en) | 1989-11-29 | 1991-01-03 | Effner GmbH, 1000 Berlin | endoscope |
US5196876A (en) | 1989-11-20 | 1993-03-23 | Thayer Donald O | Photography booth and method |
GB9001993D0 (en) | 1990-01-29 | 1990-03-28 | Toy Of The Year Toy Dreams Lim | Photobooth |
JPH0412727A (en) | 1990-05-02 | 1992-01-17 | Olympus Optical Co Ltd | Endoscope |
US5431645A (en) | 1990-05-10 | 1995-07-11 | Symbiosis Corporation | Remotely activated endoscopic tools such as endoscopic biopsy forceps |
US5164992A (en) | 1990-11-01 | 1992-11-17 | Massachusetts Institute Of Technology | Face recognition system |
JPH0817768B2 (en) | 1990-11-06 | 1996-02-28 | 富士写真光機株式会社 | Endoscope |
US5193525A (en) | 1990-11-30 | 1993-03-16 | Vision Sciences | Antiglare tip in a sheath for an endoscope |
JP3041099B2 (en) | 1991-02-01 | 2000-05-15 | オリンパス光学工業株式会社 | Electronic endoscope device |
US5188093A (en) | 1991-02-04 | 1993-02-23 | Citation Medical Corporation | Portable arthroscope with periscope optics |
DE4105326A1 (en) | 1991-02-21 | 1992-09-03 | Wolf Gmbh Richard | ENDOSCOPE WITH PROXIMALLY CONNECTABLE CAMERA |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
JP3063784B2 (en) | 1991-03-26 | 2000-07-12 | オリンパス光学工業株式会社 | Endoscope device |
JP3065702B2 (en) | 1991-04-23 | 2000-07-17 | オリンパス光学工業株式会社 | Endoscope system |
US5251613A (en) | 1991-05-06 | 1993-10-12 | Adair Edwin Lloyd | Method of cervical videoscope with detachable camera |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
DE4129961C2 (en) | 1991-09-10 | 1996-02-15 | Wolf Gmbh Richard | Video endoscope with solid-state imaging device |
US5188094A (en) | 1991-09-30 | 1993-02-23 | Adair Edwin Lloyd | Heat sterilizable electronic video endoscope |
JPH05199989A (en) | 1991-10-25 | 1993-08-10 | Asahi Optical Co Ltd | Tip part of endoscope |
US5347988A (en) | 1992-05-13 | 1994-09-20 | Linvatec Corporation | Endoscope coupler with liquid interface |
US5262815A (en) | 1992-05-27 | 1993-11-16 | Consumer Programs Incorporated | Modular photobooth photography system |
US5305121A (en) | 1992-06-08 | 1994-04-19 | Origin Medsystems, Inc. | Stereoscopic endoscope system |
US5609561A (en) | 1992-06-09 | 1997-03-11 | Olympus Optical Co., Ltd | Electronic type endoscope in which image pickup unit is dismounted to execute disinfection/sterilization processing |
CA2101040C (en) | 1992-07-30 | 1998-08-04 | Minori Takagi | Video tape recorder with a monitor-equipped built-in camera |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5704892A (en) | 1992-09-01 | 1998-01-06 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
US5402768A (en) | 1992-09-01 | 1995-04-04 | Adair; Edwin L. | Endoscope with reusable core and disposable sheath with passageways |
US5379756A (en) | 1992-09-11 | 1995-01-10 | Welch Allyn, Inc. | Replaceable lens assembly for video laparoscope |
US5381784A (en) | 1992-09-30 | 1995-01-17 | Adair; Edwin L. | Stereoscopic endoscope |
US5359992A (en) | 1992-10-20 | 1994-11-01 | Linvatec Corporation | Endoscope coupler with magnetic focus control |
US5334150A (en) | 1992-11-17 | 1994-08-02 | Kaali Steven G | Visually directed trocar for laparoscopic surgical procedures and method of using same |
US5383099A (en) | 1992-12-14 | 1995-01-17 | Peters; Larry D. | Portable photography booth and improved light reflector assembly |
US5418567A (en) | 1993-01-29 | 1995-05-23 | Bayport Controls, Inc. | Surveillance camera system |
US5408992A (en) | 1993-11-05 | 1995-04-25 | British Technology Group Usa Inc. | Endoscopic device for intraoral use |
ES2105936B1 (en) | 1994-03-21 | 1998-06-01 | I D Tec S L | IMPROVEMENTS INTRODUCED IN INVENTION PATENT N. P-9400595/8 BY: BIOMETRIC PROCEDURE FOR SECURITY AND IDENTIFICATION AND CREDIT CARDS, VISAS, PASSPORTS AND FACIAL RECOGNITION. |
US5598205A (en) | 1994-04-22 | 1997-01-28 | Olympus Optical Co., Ltd. | Imaging apparatus |
US5508735A (en) | 1994-07-12 | 1996-04-16 | Northeast Technical Service Co. Inc. | Underdeck inspection device |
JP3580869B2 (en) | 1994-09-13 | 2004-10-27 | オリンパス株式会社 | Stereoscopic endoscope |
US5792045A (en) | 1994-10-03 | 1998-08-11 | Adair; Edwin L. | Sterile surgical coupler and drape |
US5657245A (en) | 1994-11-09 | 1997-08-12 | Westinghouse Electric Corporation | Component maintenance system |
US5591192A (en) | 1995-02-01 | 1997-01-07 | Ethicon Endo-Surgery, Inc. | Surgical penetration instrument including an imaging element |
US5652849A (en) * | 1995-03-16 | 1997-07-29 | Regents Of The University Of Michigan | Apparatus and method for remote control using a visual information stream |
KR19980703120A (en) | 1995-03-20 | 1998-10-15 | 조안나 티. 라우 | Image Identification System and Method |
JPH08263664A (en) | 1995-03-22 | 1996-10-11 | Honda Motor Co Ltd | Artificial visual system and image recognizing method |
US6182047B1 (en) | 1995-06-02 | 2001-01-30 | Software For Surgeons | Medical information log system |
US5828969A (en) | 1995-06-22 | 1998-10-27 | Canadian Digital Photo/Graphics Inc. | Process for use with aircraft repairs |
US6007484A (en) | 1995-09-15 | 1999-12-28 | Image Technologies Corporation | Endoscope having elevation and azimuth control of camera |
BR9607702A (en) | 1995-09-15 | 1998-01-13 | Robert Lee Thompson | Surgical device / diagnostic imaging |
US5891013A (en) | 1996-02-07 | 1999-04-06 | Pinotage, Llc | System for single-puncture endoscopic surgery |
US5846249A (en) | 1996-02-07 | 1998-12-08 | Pinotage, Llc | Video gynecological examination apparatus |
US5928137A (en) | 1996-05-03 | 1999-07-27 | Green; Philip S. | System and method for endoscopic imaging and endosurgery |
US5931877A (en) | 1996-05-30 | 1999-08-03 | Raytheon Company | Advanced maintenance system for aircraft and military weapons |
US5879289A (en) | 1996-07-15 | 1999-03-09 | Universal Technologies International, Inc. | Hand-held portable endoscopic camera |
JP3715718B2 (en) | 1996-07-17 | 2005-11-16 | キヤノン株式会社 | Imaging device |
DE19633286A1 (en) | 1996-08-19 | 1998-02-26 | Peter Bahr | Supervision - and/or safety system for passenger aircraft |
US6229904B1 (en) | 1996-08-30 | 2001-05-08 | American Alpha, Inc | Automatic morphing photography booth |
US5696995A (en) | 1996-08-30 | 1997-12-09 | Huang; Sming | Automatic photography booth |
US5986718A (en) | 1996-09-19 | 1999-11-16 | Video Magic, Inc. | Photographic method using chroma-key and a photobooth employing the same |
US6002740A (en) * | 1996-10-04 | 1999-12-14 | Wisconsin Alumni Research Foundation | Method and apparatus for X-ray and extreme ultraviolet inspection of lithography masks and other objects |
US5800344A (en) | 1996-10-23 | 1998-09-01 | Welch Allyn, Inc. | Video laryngoscope |
US5784651A (en) | 1996-11-15 | 1998-07-21 | Polaroid Corporation | Photo booth with modular construction |
US6330351B1 (en) * | 1996-11-29 | 2001-12-11 | Kabushiki Kaisha Yuyama Seisakusho | Drug inspection device and drug packaging device |
US5757419A (en) | 1996-12-02 | 1998-05-26 | Qureshi; Iqbal | Inspection method and apparatus for tanks and the like |
US5991429A (en) | 1996-12-06 | 1999-11-23 | Coffin; Jeffrey S. | Facial recognition system for security access and identification |
US6185337B1 (en) | 1996-12-17 | 2001-02-06 | Honda Giken Kogyo Kabushiki Kaisha | System and method for image recognition |
US5980450A (en) | 1997-05-07 | 1999-11-09 | Pinotage, Llc | Coupling device for use in an imaging system |
US6142876A (en) | 1997-08-22 | 2000-11-07 | Cumbers; Blake | Player tracking and identification system |
US6141482A (en) | 1997-11-13 | 2000-10-31 | Foto Fantasy, Inc. | Method for saving, accessing and reprinting a digitized photographic image |
US6113533A (en) | 1997-12-10 | 2000-09-05 | Transamerica Technologies International | Endoscope video adapter with zoom |
US5989182A (en) | 1997-12-19 | 1999-11-23 | Vista Medical Technologies, Inc. | Device-steering shaft assembly and endoscope |
US6038333A (en) * | 1998-03-16 | 2000-03-14 | Hewlett-Packard Company | Person identifier and management system |
US6301370B1 (en) | 1998-04-13 | 2001-10-09 | Eyematic Interfaces, Inc. | Face recognition from video images |
US6292575B1 (en) | 1998-07-20 | 2001-09-18 | Lau Technologies | Real-time facial recognition and verification system |
US6377699B1 (en) * | 1998-11-25 | 2002-04-23 | Iridian Technologies, Inc. | Iris imaging telephone security module and method |
US6266436B1 (en) * | 1999-04-09 | 2001-07-24 | Kimberly-Clark Worldwide, Inc. | Process control using multiple detections |
US6067486A (en) | 1999-02-01 | 2000-05-23 | General Electric Company | Method and system for planning repair of an aircraft engine |
US6246320B1 (en) * | 1999-02-25 | 2001-06-12 | David A. Monroe | Ground link with on-board security surveillance system for aircraft and other commercial vehicles |
US6574672B1 (en) * | 1999-03-29 | 2003-06-03 | Siemens Dematic Postal Automation, L.P. | System, apparatus and method for providing a portable customizable maintenance support computer communications system |
US6323761B1 (en) | 2000-06-03 | 2001-11-27 | Sam Mog Son | Vehicular security access system |
US6954657B2 (en) * | 2000-06-30 | 2005-10-11 | Texas Instruments Incorporated | Wireless communication device having intelligent alerting system |
EP1332443A2 (en) * | 2000-09-11 | 2003-08-06 | Pinotage, LLC | System and method for obtaining and utilizing maintenance information |
-
2001
- 2001-09-12 EP EP01968842A patent/EP1332443A2/en not_active Withdrawn
- 2001-09-12 AU AU2001289056A patent/AU2001289056A1/en not_active Abandoned
- 2001-09-12 WO PCT/US2001/028587 patent/WO2002023403A2/en not_active Application Discontinuation
- 2001-09-12 US US09/951,021 patent/US6529620B2/en not_active Expired - Lifetime
-
2002
- 2002-04-24 US US10/131,113 patent/US7068301B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
HAGENIERS OMER L: "Inspection methodology and data structure for large-area NDI" NONDESTRUCTIVE EVALUATION OF AGING AIRCRAFT, AIRPORTS, AND AEROSPACE HARDWARE;SCOTTSDALE, AZ, USA DEC 3-5 96, vol. 2945, 1996, pages 152-159, XP008009821 Proc SPIE Int Soc Opt Eng;Proceedings of SPIE - The International Society for Optical Engineering 1996 * |
KOMOROWSKI J P ET AL: "Synergy between advanced composites and new NDI methods" ADV PERFORM MATER;ADVANCED PERFORMANCE MATERIALS JAN 1998 KLUWER ACADEMIC PUBLISHERS, DORDRECHT, NETHERLANDS, vol. 5, no. 1-2, January 1998 (1998-01), pages 137-151, XP001132098 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2394808A (en) * | 2002-11-01 | 2004-05-05 | Canon Europa Nv | E-Maintenance System |
WO2004066606A2 (en) * | 2003-01-24 | 2004-08-05 | Jarvis Facilities Ltd | Work site monitoring |
WO2004066606A3 (en) * | 2003-01-24 | 2005-03-24 | Jarvis Facilities Ltd | Work site monitoring |
GB2415037A (en) * | 2003-01-24 | 2005-12-14 | Jarvis Rail Ltd | Work site monitoring |
GB2415037B (en) * | 2003-01-24 | 2007-01-03 | Jarvis Rail Ltd | Work site monitoring |
GB2417091A (en) * | 2004-08-03 | 2006-02-15 | Advanced Analysis And Integrat | Aircraft test and measuring instruments |
EP2388742A3 (en) * | 2004-11-05 | 2012-03-28 | Hitachi Ltd. | Remote maintenance system, monitoring center computer used for the same, monitoring system and method of communication for maintenance |
US8234095B2 (en) | 2004-11-05 | 2012-07-31 | Hitachi, Ltd. | Remote maintenance system, monitoring center computer used for the same, monitoring system and method of communication for maintenance |
Also Published As
Publication number | Publication date |
---|---|
US20020122583A1 (en) | 2002-09-05 |
US20020033946A1 (en) | 2002-03-21 |
US6529620B2 (en) | 2003-03-04 |
WO2002023403A3 (en) | 2003-03-13 |
US7068301B2 (en) | 2006-06-27 |
EP1332443A2 (en) | 2003-08-06 |
AU2001289056A1 (en) | 2002-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6529620B2 (en) | System and method for obtaining and utilizing maintenance information | |
US20080204553A1 (en) | System and method for obtaining and utilizing maintenance information | |
US7952641B2 (en) | Sensor for imaging inside equipment | |
US20020110263A1 (en) | System and method for obtaining and utilizing maintenance information | |
US6393431B1 (en) | Compact imaging instrument system | |
US7684544B2 (en) | Portable digital radiographic devices | |
US20080116093A1 (en) | Apparatus for storing an insertion tube | |
US6990455B2 (en) | Command and control using speech recognition for dental computer connected devices | |
CN110212451A (en) | A kind of electric power AR intelligent patrol detection device | |
US20080122936A1 (en) | System and method for imaging | |
EP2620099B1 (en) | Digital slit lamp microscope system | |
US20100145146A1 (en) | Endoscopic digital recording system with removable screen and storage device | |
CA2420139A1 (en) | Method and system for transmitting digital media between remote locations | |
CA2252786C (en) | Video camera system | |
KR20120008059A (en) | Imaging system | |
US20070097324A1 (en) | Image information display unit | |
US20090198990A1 (en) | Accessory support system for remote inspection device | |
JP2004191911A (en) | Endoscope control system | |
WO1999042030A1 (en) | Compact imaging instrument system | |
EP4115797A1 (en) | Image capture systems and methods for identifying abnormalities using multispectral imaging | |
US20190017970A1 (en) | Apparatus and method for an inspection device | |
JP2004344390A (en) | Image recording device | |
JP2002326772A (en) | Crime prevention image managing system | |
US20040218089A1 (en) | Ruggedized remote monitoring system and method | |
JP2001060109A (en) | Maintenance system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001968842 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 2001968842 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001968842 Country of ref document: EP |