[go: nahoru, domu]

WO2011040477A1 - Method for manufacturing mold for imprint, mold with unremoved remaining hard mask layer, method for manufacturing mold with unremoved remaining hard mask layer, and mask blank - Google Patents

Method for manufacturing mold for imprint, mold with unremoved remaining hard mask layer, method for manufacturing mold with unremoved remaining hard mask layer, and mask blank Download PDF

Info

Publication number
WO2011040477A1
WO2011040477A1 PCT/JP2010/066966 JP2010066966W WO2011040477A1 WO 2011040477 A1 WO2011040477 A1 WO 2011040477A1 JP 2010066966 W JP2010066966 W JP 2010066966W WO 2011040477 A1 WO2011040477 A1 WO 2011040477A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard mask
mask layer
substrate
dry etching
Prior art date
Application number
PCT/JP2010/066966
Other languages
French (fr)
Japanese (ja)
Inventor
光浩 暮石
秀司 岸本
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2011040477A1 publication Critical patent/WO2011040477A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • B29C33/3878Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts used as masters for making successive impressions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning

Definitions

  • the present invention relates to a method for manufacturing an imprint mold, a mold before removing a remaining hard mask layer, a method for manufacturing the same, and a mask blank, and in particular, a mold before removing a remaining hard mask layer in which a hard mask layer having a fine pattern is applied on a substrate.
  • the present invention relates to a method for producing an imprint mold from the above, a mold before removing the remaining hard mask layer used in the method, a method for producing the mold, and a mask blank as a basis thereof.
  • DTR media Discrete Track Recording Media
  • the DTR media is intended to improve signal quality by removing (grooving) a portion of magnetic material that is not necessary for recording. Specifically, after the grooves are processed, the grooves are filled with a non-magnetic material to realize angstrom level surface flatness required for a magnetic disk drive.
  • An imprint technique is used as one of the techniques for performing this fine width groove processing.
  • a new type of media called bit-patterned media (medium for recording signals as bit patterns (dot patterns)), which has been developed by further increasing the density of this DTR media, has been proposed. Imprint technology is also considered promising in pattern formation.
  • bit-patterned media medium for recording signals as bit patterns (dot patterns)
  • Imprint technology is also considered promising in pattern formation.
  • the case of DTR media that is, the case of a line and space pattern
  • “grooving” in the present specification includes a case where a hole portion corresponding to the bit pattern or a portion other than the cylindrical portion corresponding to the bit pattern is removed from the bit patterned medium.
  • thermal imprinting is a method in which a mold on which a fine pattern is formed is pressed against a thermoplastic resin as a molding material while being heated, and then the molding material is cooled and released to transfer the fine pattern.
  • Optical imprinting is a method in which a mold on which a fine pattern is formed is pressed against a photocurable resin that is a molding material, irradiated with ultraviolet light, and then the molding material is released to transfer the fine pattern. is there.
  • mask blanks in which a film containing chromium or the like is formed on a light-transmitting substrate such as quartz glass are used.
  • a resist pattern is formed using electron beam exposure or the like.
  • the fine pattern is formed by etching the film using the resist pattern as a mask.
  • the groove processing as described above is performed on the translucent substrate using the fine pattern in the film as a mask.
  • the convex part other than the groove has a narrow width of 100 nm or less and a thick width of 1 ⁇ m or more at the same time, the micro-width part becomes relatively narrow due to the etching. A loading effect will occur.
  • etching proceeds not only in the resist thickness direction but also in the lateral direction of the resist cross section. Therefore, the width of the resist changes during dry etching of the chromium film, and as a result, the width of the chromium pattern also changes with respect to the resist width before etching. In addition, since the chrome pattern itself is gradually etched in the cross-sectional lateral direction, the width of the chrome pattern becomes thinner than a desired dimension, and the narrow pattern itself may disappear.
  • the resist film thickness is restricted in addition to the problem of the etching bias of the chromium film.
  • the resist film thickness is approximately three times the pattern width or more, the resist exposure time is reduced. There is also a possibility that problems such as degradation of resolution and pattern collapse after resist pattern formation may occur.
  • a hard mask layer having a conductive layer (TaHf layer) as a lower layer and an antioxidant layer (CrO layer) for a conductive layer as an upper layer is provided on a translucent substrate, and oxygen is substantially added.
  • a technique of performing dry etching using a gas that does not include is disclosed by the present applicant (see Patent Document 1). Further, by the same applicant, the technology in which oxygen is not used in the CrN film forming process by changing the chromium oxide layer (CrO layer) on the hard mask layer in Patent Document 1 to a chromium nitride layer (CrN layer). It is disclosed (see Patent Document 2).
  • a hard mask layer (a conductive layer and an antioxidant layer) having a fine pattern is provided on a translucent substrate, and grooves corresponding to the pattern are formed in the translucent substrate.
  • a mold before removal of the remaining hard mask layer provided on the conductive substrate is disclosed. Then, the hard mask layer in the mold before removal of the remaining hard mask layer is removed to produce an imprint mold.
  • Patent Documents 1 and 2 dry etching is performed in an atmosphere substantially free of oxygen to solve the above-described problems.
  • oxygen may still remain in the etching apparatus or may be generated during the process. This residual oxygen may suppress the progress of dry etching.
  • Sources of this residual oxygen include oxygen remaining in the etching apparatus, oxygen generated from members constituting the etching apparatus, oxygen generated from the substrate by dry etching when quartz is used for the substrate, and the like. Can be mentioned.
  • the conductive layer is protected with a CrN layer or the like, During the dry etching for pattern formation, the lower conductive layer may be oxidized.
  • residual oxygen present in the etching apparatus may affect dry etching when removing the hard mask layer. That is, the TaHf layer that should have been prevented from being oxidized by the bent CrN layer or the like is oxidized by this residual oxygen during etching, and an oxide film is formed on the surface thereof. And there exists a possibility that progress of an etching may be suppressed by this oxide film.
  • the object of the present invention has been made in consideration of the above-described circumstances, and is capable of smoothly performing dry etching on a hard mask layer and manufacturing an imprint mold that forms a fine pattern with high pattern accuracy. It is to provide a method, a mold before removing a residual hard mask layer, a method for manufacturing the mold, and mask blanks.
  • a hard mask layer including a conductive layer made of a compound containing Ta as a main component or at least one element of Hf and Zr or a material containing the compound is formed on a substrate,
  • the hard mask layer is removed by dry etching into which a reducing gas is introduced.
  • the substrate is a translucent quartz substrate
  • the conductive layer is made of Ta and Hf
  • the reducing gas contains BCl 3. It is characterized by.
  • a hard mask layer having a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound is formed on a substrate, A step of forming a resist layer for pattern formation on the mask layer, and developing the resist layer on which a pattern for forming a groove is drawn on the substrate, and then reducing the resist layer and the hard mask layer in the groove forming portion.
  • the substrate is a translucent quartz substrate
  • the conductive layer is made of Ta and Hf
  • the first and third dry etchings are performed.
  • a fluorine-based gas or a gas obtained by adding a rare gas to a fluorine-based gas is used.
  • an antioxidant layer made of chromium nitride is provided on the conductive layer.
  • a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound is provided on the substrate, and the conductive layer is provided on the conductive layer.
  • a hard mask layer having an antioxidant layer for a conductive layer Forming a hard mask layer having an antioxidant layer for a conductive layer, forming a resist layer for pattern formation on the hard mask layer, and drawing the pattern for forming a groove on the substrate
  • the step of removing the resist layer and the hard mask layer in the groove forming portion by the first dry etching into which the reducing gas is introduced and the step of forming the groove in the substrate
  • a step of removing the resist layer in a portion other than the groove forming portion after performing the dry etching of step 2 and a method of manufacturing a mold before removing the remaining hard mask layer A.
  • a conductive material comprising at least part of a substrate having a pattern formed by grooves, a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound.
  • the substrate has a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound, and the antioxidant for the conductive layer is provided.
  • a mask blank is characterized in that a hard mask layer having no layer is formed, and a resist for pattern formation is formed on the hard mask layer.
  • the progress of dry etching on the hard mask layer can be performed smoothly, and a fine pattern can be formed with high pattern accuracy.
  • the present inventors have studied various means for suppressing oxidation of the hard mask layer due to residual oxygen in the etching apparatus, more precisely, oxidation of the conductive layer in the hard mask layer.
  • the reducing gas which is not so easy to handle in the process of removing the hard mask layer from the mask blanks until the imprint mold is manufactured, should be expensive. I thought of performing dry etching while using this.
  • the residual oxygen can be greatly reduced from the stage before the pattern is formed on the hard mask layer, and the risk of surface oxidation of the conductive layer can be reduced in the subsequent process.
  • dry etching using this reducing gas even if the surface of the conductive layer is oxidized by residual oxygen, the oxidized surface can be reduced. By adding the reducing gas, etching proceeds while reducing the surface oxide layer. Found to do
  • FIG. 1 is a diagram showing a method for manufacturing an imprint mold 20 according to the present embodiment.
  • a substrate 1 for an imprint mold 20 is prepared.
  • the substrate 1 may be a conventional substrate as long as it can be used as the imprint mold 20.
  • the substrate 1 is preferably a transmissive substrate from the viewpoint of light irradiation to a transfer material.
  • the transmissive substrate 1 include a glass substrate such as a quartz substrate.
  • an SiC substrate that is resistant to chlorine gas used for dry etching on a hard mask layer to be described later can be used.
  • substrate which has tolerance with respect to chlorine type gas was mentioned, the tolerance to chlorine type gas is comparatively given by giving the following devices.
  • Weak silicon wafers can also be used. That is, instead of providing the conductive layer 2 on the silicon wafer 1, an SiO 2 layer is provided. Conductive layer 2 on top of the SiO 2 layer, by providing the anti-oxidation layer 3 protected, even as a conductive layer 2 and the oxide prevention layer 3 has been removed by chlorine gas, the SiO 2 layer is a silicon wafer 1 from a chlorine gas Will do.
  • the SiO 2 layer is removed with buffered hydrofluoric acid (hereinafter also referred to as BHF), that is, a mixed acid composed of ammonium fluoride and hydrofluoric acid.
  • BHF buffered hydrofluoric acid
  • a silicon wafer can also be used to produce a thermal imprint mold.
  • those having a SiO 2 layer as a working layer on the silicon wafer can be used as a substrate.
  • a groove is provided in the SiO 2 layer which is a processed layer, it is preferable to make the SiO 2 layer thicker than when the silicon wafer 1 is used.
  • the shape of the substrate 1 it is preferably a disc shape. This is because the resist can be applied uniformly while rotating the disk substrate 1 when applying the resist.
  • the shape may be other than a disk shape, and may be a rectangle, a polygon, or a semicircle. In the present embodiment, description will be made using a disk-shaped quartz substrate 1.
  • the quartz substrate 1 is introduced into a sputtering apparatus.
  • a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas to form a conductive layer 2 made of a tantalum-hafnium alloy, and a groove formed on the substrate 1
  • the lower layer (conductive layer 2) of the hard mask layer 7 having a fine pattern corresponding to.
  • the tantalum-hafnium alloy is preferable because it is a material that can be etched by a dry etching process using a chlorine-based gas, and the conductivity required to prevent charge-up when drawing an electron beam during mask manufacturing. Can be provided, and thereby the contrast at the time of alignment can be increased.
  • Ta compounds such as TaHf, TaZr, TaHfZr, and alloys thereof are suitable.
  • at least one element of hafnium (Hf) and zirconium (Zr) or a compound thereof (for example, HfZr) can be selected, and these materials are used as base materials, for example, B, Ge, Nb, Si, C, and the like. , N and other sub-materials can be selected.
  • the conductive layer 2 made of a tantalum-hafnium (TaHf) alloy will be described.
  • the conductive layer 2 is not exposed to the atmosphere, and a chromium target is sputtered with a mixed gas of argon and nitrogen to form a chromium nitride layer 3.
  • the upper layer (antioxidant layer 3 for conductive layer) in the hard mask layer 7 having a pattern is preferably used. The reason is as follows.
  • the surface of the chromium nitride layer 3 is mainly oxidized in place of the conductive layer 2 made of a tantalum-hafnium alloy when exposed to the air after the hard mask layer 7 is formed and in the baking process in the resist coating process. Is done.
  • dry etching is performed with a chlorine-based gas in a state where the surface of the chromium nitride layer 3 is oxidized, a much higher etching rate can be obtained than when the surface of the conductive layer 2 is oxidized.
  • chromium nitride is used in the process of producing the imprint mold 20 from the mold 10 before removing the remaining mask layer.
  • Layer 3 is sufficiently resistant. Further, when the oxidation preventing layer 3 is made of chromium nitride, it is not necessary to use oxygen gas when sputtering the chromium nitride layer, and this also has a positive effect from the viewpoint of reducing residual oxygen.
  • the material of the antioxidant layer 3 is preferably chromium nitride (CrN) from the viewpoint that it is not necessary to use oxygen in sputtering during film formation, but any other compound that can be used as the antioxidant layer may be used. .
  • a molybdenum compound, chromium oxide (CrO), SiC, amorphous carbon, or Al may be used.
  • the antioxidant layer 3 made of chromium nitride (CrN) will be described.
  • a hard mask layer 7 with the tantalum-hafnium alloy layer 2 as the lower layer and the chromium nitride layer 3 as the upper layer is formed on the quartz substrate 1.
  • the “hard mask layer” in the present embodiment is composed of a single layer or a plurality of layers, and can protect a portion where a groove corresponding to a pattern is formed, and is a layered layer used for etching a groove. Shall point to.
  • an electron beam drawing resist is applied to the hard mask layer 7 to form a resist layer 4, which is used for manufacturing an imprint mold in this embodiment.
  • a resist layer 4 which is used for manufacturing an imprint mold in this embodiment.
  • any resist suitable for the subsequent etching process may be used.
  • the electron beam drawn position corresponds to the position of the groove on the substrate 1, and if the resist layer is a negative resist, the opposite position is obtained.
  • a case where a positive resist is used that is, a case where a portion drawn on the resist layer 4 corresponds to the position of a groove in the substrate 1 will be described.
  • the thickness of the resist layer 4 at this time is preferably a thickness that remains until the etching of the hard mask layer 7 is completed. This is because not only the hard mask layer 7 but also the resist layer 4 in this portion are removed when the hard mask layer 7, that is, the conductive layer 2 and the antioxidant layer 3 in the drawing pattern portion is removed.
  • This fine pattern is drawn on the resist layer 4 of the mask blank using an electron beam drawing machine.
  • This fine pattern may be on the micron order, but may be on the nano order from the viewpoint of the performance of electronic devices in recent years, and this is preferable in view of the performance of the final product.
  • the resist layer 4 is developed, the electron beam drawn portion of the resist is removed, and a resist pattern corresponding to a desired fine pattern is formed.
  • the position of the drawn fine pattern corresponds to the position of the groove to be finally processed on the substrate 1.
  • the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus. Normally, the first dry etching with chlorine gas containing substantially no oxygen is performed to remove the conductive layer 2 and the antioxidant layer 3 in the portion where the resist layer 4 has been removed.
  • the remaining oxygen in the etching apparatus not only oxidizes the surface of the antioxidant layer 3 (CrN layer) before the first dry etching, but also the conductive layer 2 (TaHf layer). Even the oxidation may occur. Further, even during dry etching, there is a possibility that the conductive layer 2 that should have been protected by the antioxidant layer 3 may be oxidized by removing the antioxidant layer 3 by etching. As a result, an oxide film is formed on the surface of the conductive layer 2 and the progress of etching may be hindered.
  • the hard mask layer in a portion other than the groove forming portion is removed by performing the first dry etching while introducing the reducing gas.
  • the first dry etching will be described in detail.
  • the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus.
  • the first dry etching is performed in a reducing gas atmosphere that does not substantially contain oxygen.
  • a chlorine-based gas may be used as a gas for removing the hard mask layer 7 in the first dry etching, or another halide-based gas suitable for removing the hard mask layer may be used.
  • the chlorine-based gas used here include Cl 2 , BCl 3 , HCl, a mixed gas thereof, or a gas containing a rare gas (such as He, Ar, or Xe) as an additive gas.
  • any reducing gas may be used, and examples thereof include a chlorine-based gas, a hydrogen gas, and a hydrocarbon-based gas that do not contain oxygen and include a reducing gas.
  • a gas containing boron trichloride (BCl 3 ) is preferable. The presumed chemical reaction mechanism including the reason will be described.
  • chlorine gas and BCl 3 gas are introduced into an etching apparatus in which a slight residual oxygen exists.
  • both gases may be supplied at the same time, but after etching to such an extent that the chromium nitride layer 3 is removed, a BCl 3 gas may be introduced with a time difference.
  • the chromium nitride layer 3 is etched using only chlorine gas.
  • the etching can proceed extremely stably until at least the removal of the chromium nitride layer 3.
  • the chromium nitride layer 3 is removed by dry etching in this way, the surface of the TaHf layer 2 that is a conductive layer is exposed, and residual oxygen attempts to oxidize the surface of the TaHf layer 2.
  • the BCl 3 gas introduced into the etching apparatus collects residual oxygen in the following two ways.
  • BCl 3 reacts with oxygen to become boron oxide (B x O y ) by discharge due to dry etching, thereby collecting residual oxygen and preventing the surface of TaHf layer 2 from being oxidized. It is guessed.
  • the etching of the pattern portion in the mask blank (first dry etching), or the etching for removing the remaining hard mask layer immediately before the imprint mold fabrication described later (third dry etching) is performed.
  • first dry etching the etching for removing the remaining hard mask layer immediately before the imprint mold fabrication described later
  • third dry etching By introducing a reducing gas when removing the hard mask layer 7, residual oxygen can be eliminated from the etching apparatus very efficiently.
  • a hard mask layer 7 having a fine pattern is formed.
  • the etching end point at this time is determined by using a reflection optical end point detector.
  • substantially no oxygen means “not containing oxygen to the extent that the oxygen content in the etching apparatus is 5% or less”.
  • performing dry etching using a gas that does not substantially contain oxygen is also simply referred to as dry etching.
  • the quartz substrate 1 is subjected to a second dry etching using a fluorine-based gas in the same dry etching apparatus. At this time, the quartz substrate 1 is etched using the hard mask layer 7 as a mask, and grooves corresponding to the fine pattern shown in FIG. Thereafter, the resist is removed with an alkaline solution or an acid solution.
  • fluorine-based gas used here examples include C x F y (for example, CF 4 , C 2 F 6 , C 3 F 8 ), CHF 3 , mixed gases thereof, or those containing noble gases (He, Ar, Xe, etc.) as additive gases.
  • C x F y for example, CF 4 , C 2 F 6 , C 3 F 8
  • CHF 3 mixed gases thereof
  • noble gases He, Ar, Xe, etc.
  • the groove processing corresponding to the fine pattern is performed on the quartz substrate 1, and the hard mask layer 7 having the fine pattern is formed on the portion other than the groove of the quartz substrate 1.
  • an acid solution such as sulfuric acid
  • the hard mask layer 7 remaining on the mold 10 before the remaining hard mask layer is removed by performing the third dry etching while introducing the reducing gas. Remove.
  • the dry etching gas for removing the hard mask layer is chlorine gas
  • the reducing gas is BCl 3
  • the gas used in the second dry etching is evacuated, and then the chlorine Dry etching is performed while introducing a gas and BCl 3 gas into the etching apparatus.
  • the substrate 1 is cleaned if necessary. In this way, the imprint mold 20 is completed.
  • the first to third dry etching is performed.
  • the dry etching is separately performed according to the hard mask layer constituent materials other than the conductive layer and the antioxidant layer. It may be added during etching.
  • the following steps may be performed after the formation of the residual hard mask layer removal mold 10 and before the remaining hard mask layer removal step. . That is, the base structure resist 6 is applied on the mold 10 before removing the remaining hard mask layer in which the groove processing is performed on the quartz, and exposure and development with ultraviolet light are performed (FIG. 2A). Then, the mold 10 before removal of the remaining hard mask layer on which the resist pattern is formed is wet-etched with a mixed solution of hydrofluoric acid and ammonium fluoride, and the resist is removed by predetermined acid cleaning (FIG. 2 ( b)). In this way, the mold 10 before removing the remaining hard mask layer having the pedestal structure is manufactured (FIG. 2C), and the imprint mold 20 is manufactured through the dry etching in which the reducing gas is introduced as described above. Good.
  • the following effects can be obtained.
  • the remaining oxygen is further subjected to dry etching in the presence of a reducing gas from the time of pattern formation etching on the hard mask layer 7.
  • the reductive gas collects the residual oxygen itself, thereby preventing surface oxidation at a considerable portion, and at the same time, returning to the state before oxidation even when the surface is oxidized. Therefore, residual oxygen can be collected very efficiently during dry etching. Moreover, this effect is exhibited not only in dry etching at the time of pattern formation, but also in removing the remaining hard mask layer from the mold before removing the remaining hard mask layer. As a result, dry etching on the hard mask layer 7 can be performed smoothly. As a result, a groove corresponding to a fine pattern can be formed in the substrate 1 with high pattern accuracy, and a high-quality imprint mold 20 can be provided.
  • Such an imprint mold 20 can be used for thermal imprinting and optical imprinting, and can also be applied to nanoimprint technology.
  • the present embodiment can be suitably applied to DTR media manufactured using imprint technology.
  • the antioxidant layer 3 made of chromium nitride is provided on the conductive layer 2 made of the tantalum-hafnium alloy layer.
  • this embodiment it is a figure which shows the manufacturing method of the mold 20 for imprinting concerning this embodiment about the case where the antioxidant layer is not provided but the resist layer 4 is provided directly on the conductive layer 2. 3 will be described.
  • the substrate 1 for the imprint mold 20 is prepared (FIG. 3A).
  • the substrate 1 may be a substrate similar to the substrate in the first embodiment.
  • description will be made using a disk-shaped quartz substrate 1.
  • the parts that are not specially mentioned are the same as those in the first embodiment.
  • the quartz substrate 1 is introduced into a sputtering apparatus. Then, a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas, and a conductive layer 2 made of tantalum-hafnium alloy is formed on the quartz substrate 1 (FIG. 3B).
  • a nano-order fine pattern is drawn on the resist layer 4 of the .BR> ⁇ blank using an electron beam drawing machine.
  • the resist layer 4 is developed to form a resist pattern corresponding to the desired fine pattern (FIG. 3D).
  • the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus. Normally, even if the first dry etching with chlorine gas containing substantially no oxygen is performed, the surface of the conductive layer 2 is oxidized by the remaining residual oxygen because there is no antioxidant layer. . As a result, the progress of etching is suppressed.
  • the residual oxygen in the etching apparatus can be reduced by a considerable amount from the start of dry etching. . Therefore, oxidation of the surface of the conductive layer 2 can be suppressed without providing an antioxidant layer on the conductive layer 2.
  • the conductive layer 2 having a fine pattern is formed by the first dry etching as described above (FIG. 3E).
  • the quartz substrate 1 is subjected to a second dry etching using a fluorine-based gas in the same dry etching apparatus. At this time, the quartz substrate 1 is etched using the conductive layer 7 as a mask, and a groove corresponding to the fine pattern is formed on the substrate (FIG. 3F). Thereafter, the resist is removed with an alkaline solution or an acid solution.
  • the groove processing corresponding to the fine pattern is performed on the quartz substrate 1, and the hard mask layer composed only of the conductive layer 7 having the fine pattern is formed on the portion other than the groove of the quartz substrate 1.
  • the mold 10 before removing the remaining hard mask layer for the imprint mold 20 is produced.
  • the mold 10 before removing the conductive layer is formed on the mold 10 before removing the conductive layer by the third dry etching using a reducing gas in the present embodiment, similarly to the first dry etching.
  • the remaining conductive layer 2 is removed.
  • the basic procedure of the third dry etching, the dry etching gas and reducing gas for removing the hard mask layer, and the mechanism of the progress of the dry etching are the same as those in the first dry etching and the first embodiment. is there.
  • the substrate 1 is washed if necessary. In this way, the imprint mold 20 is completed.
  • the step of providing an antioxidizing layer can be omitted in the production of mask blanks, and the substance used for the imprint mold Can reduce the kind of.
  • the processing step for the anti-oxidation layer is not necessary, and the lamination step can be simplified.
  • the manufacturing cost of the imprint mold can be reduced and the yield can be improved.
  • Example 1 (Method for producing an imprint mold when an antioxidant layer is provided)
  • a disc-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm) was used as the substrate 1 (FIG. 1A).
  • This quartz substrate 1 was introduced into a sputtering apparatus.
  • an electron beam drawing resist film 4 ZP520A manufactured by Nippon Zeon Co., Ltd.
  • ZP520A manufactured by Nippon Zeon Co., Ltd.
  • a line and space pattern having a periodic structure with a line of 30 nm and a space of 60 nm is drawn on the resist film 4 of the mask blank using an electron beam drawing machine (pressurized voltage 100 kV), and then the resist film 4 is developed. A fine pattern was formed (FIG. 1 (d)).
  • the etching time was adjusted so that the groove depth of the substrate 1 was 70 nm. Specifically, etching was performed for 230 seconds.
  • the evaluation blanks produced in the same manner as above were broken and the cross-section of the pattern was observed with a scanning electron microscope.
  • the resist pattern disappeared and the surface of the chromium nitride layer 3 was exposed.
  • the film thickness of the chromium nitride layer 3 was reduced to about 1 nm with respect to 2.5 nm before the etching, but the width of the groove of the quartz substrate 1 was changed to the tantalum-hafnium alloy layer 2, the chromium nitride layer 3, and the like. It was confirmed that the width of the fine pattern composed of the hard mask layer 7 having the same is almost the same as that of the fine pattern and that the groove depth of the quartz substrate 1 is uniform.
  • a mold 10 for removing the remaining hard mask layer for removal was obtained (FIG. 1 (f)).
  • Example 2 Method for producing imprint mold when no antioxidant layer is provided
  • a disc-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm) was used as the substrate 1 as in Example 1 (FIG. 3A).
  • This quartz substrate 1 was introduced into a sputtering apparatus.
  • FIG. 3B Method for producing imprint mold when no antioxidant layer is provided
  • an anti-oxidation layer is not provided on the conductive layer 2 and exposure to the atmosphere is not performed.
  • a resist film 4 for electron beam drawing Zeon Corporation ZEP520A was applied by spin coating to a thickness of 45 nm and baked (FIG. 3C).
  • the substrate 1 on which the tantalum-hafnium alloy layer 2 having a resist pattern is formed is introduced into a dry etching apparatus, and BCl 3 gas and Cl 2 gas are introduced simultaneously, and dry etching substantially free of oxygen is performed.
  • BCl 3 : Cl 2 1: 5 (flow rate ratio)
  • the conductive layer 2 which has a fine pattern was formed (FIG.3 (e)).
  • the etching time was adjusted so that the groove depth of the substrate 1 was 70 nm. Specifically, etching was performed for 270 seconds.
  • the evaluation blanks produced in the same manner as above were broken, and the pattern cross-section was observed with a scanning electron microscope. As a result, the resist pattern disappeared and the tantalum-hafnium alloy layer 2 The surface of was exposed. It was confirmed that the width of the groove of the quartz substrate 1 was almost the same as the width of the fine pattern made of the tantalum-hafnium alloy layer 2 and that the depth of the groove of the quartz substrate 1 was uniform.
  • a mold 10 for removing the remaining hard mask layer for removal was obtained (FIG. 3F).
  • Example 1 The imprint molds obtained in Example 1 and the comparative example were observed using a scanning electron microscope. The result is shown in FIG. 4A is a photograph showing the surface of the imprint mold in Example 1, and FIG. 4B is a comparative example.
  • Example 1 it was found from FIG. 4A that no oxide film was generated during the removal of the hard mask layer, and etching was performed uniformly. On the other hand, in the comparative example, it was found from FIG. 4B that an infinite number of oxide films were generated on the substrate and etching was not performed uniformly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Disclosed is a method for manufacturing a mold for imprint, wherein, in a step of forming, on a substrate, a hard mask layer including a conductive layer composed of a material containing a compound having Ta as a main component or at least an element, i.e., Hf or Zr, or a compound of such elements, and removing the hard mask layer from the mask blank having a resist layer for pattern formation formed thereon, the hard mask layer is removed by dry-etching with a reductive gas introduced.

Description

インプリント用モールドの製造方法、残存ハードマスク層除去前モールドおよびその製造方法、ならびにマスクブランクスImprint mold manufacturing method, residual hard mask layer removal mold and manufacturing method thereof, and mask blanks
 本発明はインプリント用モールドの製造方法、残存ハードマスク層除去前モールドおよびその製造方法、ならびにマスクブランクスに関し、特に、微細パターンを有するハードマスク層を基板上に施した残存ハードマスク層除去前モールドからインプリント用モールドを製造する方法、その方法に用いられる残存ハードマスク層除去前モールドおよびその製造方法、ならびにそれらの基となるマスクブランクスに関する。 The present invention relates to a method for manufacturing an imprint mold, a mold before removing a remaining hard mask layer, a method for manufacturing the same, and a mask blank, and in particular, a mold before removing a remaining hard mask layer in which a hard mask layer having a fine pattern is applied on a substrate. The present invention relates to a method for producing an imprint mold from the above, a mold before removing the remaining hard mask layer used in the method, a method for producing the mold, and a mask blank as a basis thereof.
 従来、ハードディスク等で用いられる磁気ディスクにおいては、磁気ヘッド幅を極小化し、情報が記録されるデータトラック間を狭めて高密度化を図るという手法が用いられてきた。その一方で、この磁気ディスクは高密度化がますます進み、隣接トラック間の磁気的影響が無視できなくなっている。そのため、従来手法だと高密度化に限界がきている。 Conventionally, in a magnetic disk used in a hard disk or the like, a method has been used in which the magnetic head width is minimized and the data tracks on which information is recorded are narrowed to increase the density. On the other hand, the density of this magnetic disk has been increased and the magnetic influence between adjacent tracks cannot be ignored. For this reason, the conventional method has a limit in increasing the density.
 最近、磁気ディスクのデータトラックを磁気的に分離して形成するディスクリートトラック型メディア(Discrete Track Recording Media;以下、DTRメディアという。)という、新しいタイプのメディアが提案されている。 Recently, a new type of media called Discrete Track Recording Media (hereinafter referred to as DTR media) in which data tracks of a magnetic disk are magnetically separated has been proposed.
 DTRメディアとは、記録に不要な部分の磁性材料を除去(溝加工)して信号品質を改善しようとするものである。具体的には、溝加工した後に、その溝を非磁性材料で充填して、磁気ディスクドライブに要求されるオングストロームレベルの表面平坦性を実現したものである。そして、この微細な幅の溝加工を行う手法の1つとしてインプリント技術が用いられている。なお、このDTRメディアをさらに高密度化して発展させた、ビットパターンドメディア(信号をビットパターン(ドットパターン)として記録するメディア)という新しいタイプのメディアも提唱されてきており、このパターンドメディアのパターン形成においてもインプリント技術が有望視されている。
 以降、本発明についての説明の便宜上、DTRメディアの場合(即ちラインアンドスペースパターンの場合)について、本明細書では主に述べる。しかしながら、本明細書における「溝加工」とは、ビットパターンドメディアにおいてビットパターンに対応する穴部分、又はビットパターンに対応する円柱部分以外の部分を除去する場合も含むものとする。
The DTR media is intended to improve signal quality by removing (grooving) a portion of magnetic material that is not necessary for recording. Specifically, after the grooves are processed, the grooves are filled with a non-magnetic material to realize angstrom level surface flatness required for a magnetic disk drive. An imprint technique is used as one of the techniques for performing this fine width groove processing. A new type of media called bit-patterned media (medium for recording signals as bit patterns (dot patterns)), which has been developed by further increasing the density of this DTR media, has been proposed. Imprint technology is also considered promising in pattern formation.
Hereinafter, for convenience of description of the present invention, the case of DTR media (that is, the case of a line and space pattern) will be mainly described in this specification. However, “grooving” in the present specification includes a case where a hole portion corresponding to the bit pattern or a portion other than the cylindrical portion corresponding to the bit pattern is removed from the bit patterned medium.
 なお、このインプリント技術は大きく分けて2種類あり、熱インプリントと光インプリントとがある。熱インプリントは、微細パターンが形成されたモールドを被成形材料である熱可塑性樹脂に加熱しながら押し付け、その後で被成形材料を冷却・離型し、微細パターンを転写する方法である。また、光インプリントは、微細パターンが形成されたモールドを被成形材料である光硬化性樹脂に押し付けて紫外光を照射し、その後で被成形材料を離型し、微細パターンを転写する方法である。 There are two main types of imprint technology, thermal imprint and optical imprint. Thermal imprinting is a method in which a mold on which a fine pattern is formed is pressed against a thermoplastic resin as a molding material while being heated, and then the molding material is cooled and released to transfer the fine pattern. Optical imprinting is a method in which a mold on which a fine pattern is formed is pressed against a photocurable resin that is a molding material, irradiated with ultraviolet light, and then the molding material is released to transfer the fine pattern. is there.
 ここで挙げた光インプリント用モールドの作製においては、石英ガラスなどの透光性基板上にクロム等を含む膜を形成したマスクブランクスが用いられる。このマスクブランクス上にレジストを塗布した後、電子線露光などを用いてレジストパターンを形成する。そして、このレジストパターンをマスクとして前記膜をエッチング加工することにより微細パターンを形成している。その後、前記膜における微細パターンをマスクとして透光性基板に上述のような溝加工がなされている。 In the production of the optical imprint mold mentioned here, mask blanks in which a film containing chromium or the like is formed on a light-transmitting substrate such as quartz glass are used. After applying a resist on the mask blanks, a resist pattern is formed using electron beam exposure or the like. Then, the fine pattern is formed by etching the film using the resist pattern as a mask. Thereafter, the groove processing as described above is performed on the translucent substrate using the fine pattern in the film as a mask.
 しかしながら、上述のような膜に対するエッチング加工の際、酸素ガスおよび塩素ガスを用いて溝加工を施すと、以下のような不具合が生じるおそれがある。 However, when the groove processing is performed using oxygen gas and chlorine gas at the time of etching the film as described above, the following problems may occur.
 例えばエッチングを行う際に、溝以外の凸部分が、100nm以下の細い幅と1μm以上の太い幅とを同時に有している場合、エッチングによって細い幅の部分が相対的に狭くなってしまうというマイクロローディング効果が発生してしまう。 For example, when performing etching, if the convex part other than the groove has a narrow width of 100 nm or less and a thick width of 1 μm or more at the same time, the micro-width part becomes relatively narrow due to the etching. A loading effect will occur.
 また、酸素ガスおよび塩素ガスを用いた場合、レジスト厚み方向のみでなくレジスト断面横方向にもエッチングが進行する。そのため、クロム膜をドライエッチングする間にレジストの幅が変化し、結果的にクロムパターンの幅もエッチング前のレジスト幅に対して変化してしまう。それに加え、さらにクロムパターン自身も徐々に断面横方向にエッチングされるため、クロムパターンの幅は望ましい寸法より細くなり、幅の細いパターン自体が消失してしまう場合も生じる。 Also, when oxygen gas and chlorine gas are used, etching proceeds not only in the resist thickness direction but also in the lateral direction of the resist cross section. Therefore, the width of the resist changes during dry etching of the chromium film, and as a result, the width of the chromium pattern also changes with respect to the resist width before etching. In addition, since the chrome pattern itself is gradually etched in the cross-sectional lateral direction, the width of the chrome pattern becomes thinner than a desired dimension, and the narrow pattern itself may disappear.
 また、パターンの寸法が微細化した場合には、クロム膜のエッチングバイアスの問題の他、レジスト膜厚にも制約が生じ、レジストの膜厚がおおむねパターン幅の3倍以上になると、レジスト露光時の解像性低下やレジストパターン形成後のパターン倒壊といった問題が生じるおそれもある。 Further, when the pattern size is miniaturized, the resist film thickness is restricted in addition to the problem of the etching bias of the chromium film. When the resist film thickness is approximately three times the pattern width or more, the resist exposure time is reduced. There is also a possibility that problems such as degradation of resolution and pattern collapse after resist pattern formation may occur.
 上記の問題を解決するために、下層を導電層(TaHf層)そして上層を導電層用の酸化防止層(CrO層)としたハードマスク層を透光性基板上に設け、実質的に酸素を含まないガスを用いてドライエッチングを行う技術が本出願人により開示されている(特許文献1参照)。さらには、同じく本出願人により、この特許文献1におけるハードマスク層上層の酸化クロム層(CrO層)を窒化クロム層(CrN層)に変更することによりCrN成膜工程において酸素を使用しない技術について開示されている(特許文献2参照)。 In order to solve the above problems, a hard mask layer having a conductive layer (TaHf layer) as a lower layer and an antioxidant layer (CrO layer) for a conductive layer as an upper layer is provided on a translucent substrate, and oxygen is substantially added. A technique of performing dry etching using a gas that does not include is disclosed by the present applicant (see Patent Document 1). Further, by the same applicant, the technology in which oxygen is not used in the CrN film forming process by changing the chromium oxide layer (CrO layer) on the hard mask layer in Patent Document 1 to a chromium nitride layer (CrN layer). It is disclosed (see Patent Document 2).
特開2009-80421号公報JP 2009-80421 A 特開2009-98689号公報JP 2009-98689 A
 上述の通り、特許文献1および2に開示された技術においては、微細パターンを有するハードマスク層(導電層と酸化防止層)を透光性基板上に設け、パターンに対応する溝をこの透光性基板に設けた残存ハードマスク層除去前モールドが開示されている。そして、この残存ハードマスク層除去前モールドにおけるハードマスク層を除去して、インプリント用モールドが作製される。 As described above, in the techniques disclosed in Patent Documents 1 and 2, a hard mask layer (a conductive layer and an antioxidant layer) having a fine pattern is provided on a translucent substrate, and grooves corresponding to the pattern are formed in the translucent substrate. A mold before removal of the remaining hard mask layer provided on the conductive substrate is disclosed. Then, the hard mask layer in the mold before removal of the remaining hard mask layer is removed to produce an imprint mold.
 確かに特許文献1および2においては、酸素を実質的に含まない雰囲気下でドライエッチングを行い、上述のような不具合を解消している。しかしながら、それでもなおエッチング装置内に酸素が残存または工程中に発生している場合がある。この残存酸素により、ドライエッチングの進行が抑制されるおそれがある。 Certainly, in Patent Documents 1 and 2, dry etching is performed in an atmosphere substantially free of oxygen to solve the above-described problems. However, oxygen may still remain in the etching apparatus or may be generated during the process. This residual oxygen may suppress the progress of dry etching.
 この残存酸素の発生源としては、そもそもエッチング装置内に残留している酸素、エッチング装置を構成する部材から発生する酸素、基板に石英を用いている場合はドライエッチングにより基板から発生する酸素などが挙げられる。 Sources of this residual oxygen include oxygen remaining in the etching apparatus, oxygen generated from members constituting the etching apparatus, oxygen generated from the substrate by dry etching when quartz is used for the substrate, and the like. Can be mentioned.
 特に、パターン形成前からエッチング装置内に残留している酸素については、パターン形状に対応するようにハードマスク層をエッチングする際において、CrN層などで導電層を保護していたにもかかわらず、パターン形成のためのドライエッチングの最中に下層の導電層までも酸化してしまうおそれがある。 In particular, with respect to oxygen remaining in the etching apparatus before pattern formation, when the hard mask layer is etched so as to correspond to the pattern shape, the conductive layer is protected with a CrN layer or the like, During the dry etching for pattern formation, the lower conductive layer may be oxidized.
 その結果、エッチング装置内に存在する残存酸素により、ハードマスク層除去の際のドライエッチングに影響を与えるおそれがある。すなわち、折角CrN層などで酸化防止していたはずのTaHf層がエッチングの最中にこの残存酸素により酸化して、その表面に酸化被膜が形成されてしまう。そして、この酸化被膜によりエッチングの進行が抑制されてしまうおそれがある。 As a result, residual oxygen present in the etching apparatus may affect dry etching when removing the hard mask layer. That is, the TaHf layer that should have been prevented from being oxidized by the bent CrN layer or the like is oxidized by this residual oxygen during etching, and an oxide film is formed on the surface thereof. And there exists a possibility that progress of an etching may be suppressed by this oxide film.
 なおこの際、化学的なエッチングの進行が酸化被膜により抑制されるとしても、エッチング装置の出力を大きくすることによって物理的なエッチングを行うことも考えられる。しかしこれを行うことにより、今度はハードマスク層と基板との間で所望のエッチング選択比を設定することが難しくなり、基板表面の荒れや微細パターンの寸法変化等に繋がるおそれがある。さらには基板に石英を用いている場合は、物理的エッチングにより基板から酸素が発生し、それによってTaHf層表面に酸化被膜が形成されるおそれがある。 At this time, even if the progress of chemical etching is suppressed by the oxide film, physical etching may be performed by increasing the output of the etching apparatus. However, by doing this, it becomes difficult to set a desired etching selectivity between the hard mask layer and the substrate this time, which may lead to roughness of the substrate surface, dimensional change of the fine pattern, and the like. Furthermore, when quartz is used for the substrate, oxygen is generated from the substrate by physical etching, which may cause an oxide film to be formed on the surface of the TaHf layer.
 本発明の目的は、上述の事情を考慮してなされたものであり、ハードマスク層に対するドライエッチングの進行をスムーズに行うことができ、高いパターン精度で微細パターンを形成するインプリント用モールドの製造方法、残存ハードマスク層除去前モールドおよびその製造方法、ならびにマスクブランクスを提供することにある。 The object of the present invention has been made in consideration of the above-described circumstances, and is capable of smoothly performing dry etching on a hard mask layer and manufacturing an imprint mold that forms a fine pattern with high pattern accuracy. It is to provide a method, a mold before removing a residual hard mask layer, a method for manufacturing the mold, and mask blanks.
 本発明の第一の態様は、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を含むハードマスク層が基板上に形成され、さらに前記ハードマスク層上にパターン形成用レジスト層が形成されたマスクブランクスからハードマスク層を除去する工程において、還元性ガスが導入されたドライエッチングにより前記ハードマスク層を除去することを特徴とする。
 本発明の第二の態様は、第一の態様に記載の発明において、前記基板は透光性石英基板であり、前記導電層はTaおよびHfからなり、前記還元性ガスはBClを含むことを特徴とする。
 本発明の第三の態様は、基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有するハードマスク層を形成し、前記ハードマスク層上にパターン形成用レジスト層を形成する工程と、前記基板に溝を形成するためのパターンが描画された前記レジスト層を現像した後、溝形成部分のレジスト層およびハードマスク層を還元性ガスが導入された第1のドライエッチングで除去する工程と、除去された導電層の部分の透光性基板に対して第2のドライエッチングを行った後、溝形成部分以外の部分のレジスト層を除去する工程と、還元性ガスが導入された第3のドライエッチングにより、前記溝形成部分以外の部分の導電層を除去する残存ハードマスク層除去工程とを有することを特徴とする。
 本発明の第四の態様は、第三の態様に記載の発明において、前記基板は透光性石英基板であり、前記導電層はTaおよびHfからなり、前記第1および第3のドライエッチングにおいて、BClを含む還元性ガスおよび塩素ガスを用い、前記第2のドライエッチングにおいて、フッ素系ガス、またはフッ素系ガスに希ガスを加えたものを用いたことを特徴とする。
 本発明の第五の態様は、第一ないし第四の態様のいずれかに記載の発明において、前記導電層の上部に、窒化クロムからなる酸化防止層が設けられたことを特徴とする。
 本発明の第六の態様は、基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層と、前記導電層の上部に設けられた導電層用の酸化防止層と、を有するハードマスク層を形成し、前記ハードマスク層上にパターン形成用レジスト層を形成する工程と、前記基板に溝を形成するためのパターンが描画された前記レジスト層を現像した後、溝を形成する部分のレジスト層およびハードマスク層を還元性ガスが導入された第1のドライエッチングで除去する工程と、前記基板における溝を形成する部分に対して第2のドライエッチングを行った後、溝形成部分以外の部分のレジスト層を除去する工程と、を有することを特徴とする残存ハードマスク層除去前モールドの製造方法である。
 本発明の第七の態様は、溝により形成されるパターンを有する基板上の少なくとも一部に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有しかつ前記導電層用の酸化防止層を有さないハードマスク層が形成されたことを特徴とする残存ハードマスク層除去前モールドである。
 本発明の第八の態様は、基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有しかつ前記導電層用の酸化防止層を有さないハードマスク層が形成され、前記ハードマスク層上にパターン形成用レジストが形成されたことを特徴とするマスクブランクスである。
In a first aspect of the present invention, a hard mask layer including a conductive layer made of a compound containing Ta as a main component or at least one element of Hf and Zr or a material containing the compound is formed on a substrate, In the step of removing the hard mask layer from the mask blank in which the resist layer for pattern formation is formed on the mask layer, the hard mask layer is removed by dry etching into which a reducing gas is introduced.
According to a second aspect of the present invention, in the invention according to the first aspect, the substrate is a translucent quartz substrate, the conductive layer is made of Ta and Hf, and the reducing gas contains BCl 3. It is characterized by.
In a third aspect of the present invention, a hard mask layer having a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound is formed on a substrate, A step of forming a resist layer for pattern formation on the mask layer, and developing the resist layer on which a pattern for forming a groove is drawn on the substrate, and then reducing the resist layer and the hard mask layer in the groove forming portion. Step of removing by first dry etching in which gas is introduced, and second dry etching is performed on the light-transmitting substrate in the portion of the removed conductive layer, and then the resist layer in a portion other than the groove forming portion And a remaining hard mask layer removing step of removing a conductive layer in a portion other than the groove forming portion by a third dry etching in which a reducing gas is introduced. And wherein the Rukoto.
According to a fourth aspect of the present invention, in the invention according to the third aspect, the substrate is a translucent quartz substrate, the conductive layer is made of Ta and Hf, and the first and third dry etchings are performed. , Using a reducing gas containing BCl 3 and a chlorine gas, and in the second dry etching, a fluorine-based gas or a gas obtained by adding a rare gas to a fluorine-based gas is used.
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, an antioxidant layer made of chromium nitride is provided on the conductive layer.
According to a sixth aspect of the present invention, a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound is provided on the substrate, and the conductive layer is provided on the conductive layer. Forming a hard mask layer having an antioxidant layer for a conductive layer, forming a resist layer for pattern formation on the hard mask layer, and drawing the pattern for forming a groove on the substrate After developing the resist layer, the step of removing the resist layer and the hard mask layer in the groove forming portion by the first dry etching into which the reducing gas is introduced, and the step of forming the groove in the substrate And a step of removing the resist layer in a portion other than the groove forming portion after performing the dry etching of step 2, and a method of manufacturing a mold before removing the remaining hard mask layer A.
According to a seventh aspect of the present invention, there is provided a conductive material comprising at least part of a substrate having a pattern formed by grooves, a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound. A mold before removal of the remaining hard mask layer, wherein a hard mask layer having a layer and not having an antioxidant layer for the conductive layer is formed.
According to an eighth aspect of the present invention, the substrate has a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound, and the antioxidant for the conductive layer is provided. A mask blank is characterized in that a hard mask layer having no layer is formed, and a resist for pattern formation is formed on the hard mask layer.
 本発明によれば、ハードマスク層に対するドライエッチングの進行をスムーズに行うことができ、高いパターン精度で微細パターンを形成できる。 According to the present invention, the progress of dry etching on the hard mask layer can be performed smoothly, and a fine pattern can be formed with high pattern accuracy.
本実施形態に係るインプリント用モールドの製造工程を説明するための断面概略図である。It is a section schematic diagram for explaining a manufacturing process of an imprint mold concerning this embodiment. 別の実施形態に係る台座構造を有するインプリント用モールドの製造工程を説明するための断面概略図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing process of the mold for imprint which has a base structure which concerns on another embodiment. 別の実施形態に係るインプリント用モールドの製造工程を説明するための断面概略図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing process of the mold for imprint which concerns on another embodiment. 実施例1および比較例により得られたインプリント用モールドについて、走査型電子顕微鏡を用いて観察した結果を示す図であり、(a)は実施例1、(b)は比較例におけるインプリント用モールドの表面を示す写真である。It is a figure which shows the result observed using the scanning electron microscope about the imprint mold obtained by Example 1 and the comparative example, (a) is Example 1 and (b) is for imprint in a comparative example. It is a photograph which shows the surface of a mold.
 本発明者らは、エッチング装置内の残存酸素によるハードマスク層の酸化、より正確にはハードマスク層内の導電層の酸化を抑制するための手段について種々検討した。
 その結果、本発明者らは、マスクブランクスからインプリント用モールドを製造するまでの間、ハードマスク層を除去する工程において、扱いがそこまで容易ではなく、別途設備コストがかかるはずの還元性ガスを用いながらドライエッチングを行うことを想到した。そしてこれにより、ハードマスク層に対してパターンを形成する前の段階から残存酸素を大幅に減らすことができ、その後の工程において導電層の表面酸化のおそれを軽減できることを見出した。さらにこの還元性ガスを用いたドライエッチングにおいて、仮に残存酸素により導電層表面が酸化されても、酸化表面を還元でき、還元性ガスを添加することによって、表面酸化層を還元させながらエッチングが進行することを見出した
The present inventors have studied various means for suppressing oxidation of the hard mask layer due to residual oxygen in the etching apparatus, more precisely, oxidation of the conductive layer in the hard mask layer.
As a result, the present inventors have found that the reducing gas, which is not so easy to handle in the process of removing the hard mask layer from the mask blanks until the imprint mold is manufactured, should be expensive. I thought of performing dry etching while using this. As a result, it has been found that the residual oxygen can be greatly reduced from the stage before the pattern is formed on the hard mask layer, and the risk of surface oxidation of the conductive layer can be reduced in the subsequent process. Furthermore, in dry etching using this reducing gas, even if the surface of the conductive layer is oxidized by residual oxygen, the oxidized surface can be reduced. By adding the reducing gas, etching proceeds while reducing the surface oxide layer. Found to do
<実施の形態1>
 以下、本発明の知見を基に、本発明を実施するための最良の形態を、本実施形態に係るインプリント用モールド20の製造方法を示す図である図1に基づき説明する。
<Embodiment 1>
Hereinafter, based on the knowledge of the present invention, the best mode for carrying out the present invention will be described based on FIG. 1, which is a diagram showing a method for manufacturing an imprint mold 20 according to the present embodiment.
 まず図1(a)に示すように、インプリント用モールド20のための基板1を用意する。
 この基板1は、インプリント用モールド20として用いることができるのならば従来のものでも良いが、光インプリントを行う場合は被転写材への光照射の観点から透過性基板であることが好ましい。この透過性基板1としては、石英基板などのガラス基板が挙げられる。また、熱インプリントを行う場合は、後述するハードマスク層に対するドライエッチングに用いられる塩素ガスに耐性があるSiC基板が挙げられる。
First, as shown in FIG. 1A, a substrate 1 for an imprint mold 20 is prepared.
The substrate 1 may be a conventional substrate as long as it can be used as the imprint mold 20. However, in the case of performing optical imprinting, the substrate 1 is preferably a transmissive substrate from the viewpoint of light irradiation to a transfer material. . Examples of the transmissive substrate 1 include a glass substrate such as a quartz substrate. In the case of performing thermal imprinting, an SiC substrate that is resistant to chlorine gas used for dry etching on a hard mask layer to be described later can be used.
 なお、熱インプリントを行う場合の基板1について、塩素系ガスに対して耐性を有する基板であるSiC基板を挙げたが、以下のような工夫を施すことにより塩素系ガスへの耐性が比較的弱いシリコンウエハを使用することもできる。すなわち、シリコンウエハ1上に導電層2を設けるのではなく、SiO層を設ける。このSiO層の上に導電層2、酸化防止層3を設けることにより、導電層2および酸化防止層3が塩素ガスで除去されたとしても、SiO層がシリコンウエハ1を塩素ガスから保護することになる。そして、バッファードフッ酸(以降、BHFともいう)すなわちフッ化アンモニウム及びフッ酸からなる混酸により、SiO層を除去する。こうすることにより、熱インプリント用モールドを作製するために、シリコンウエハを使用することもできる。また、シリコンウエハ上に加工層としてSiO層を設けたものを基板として使用することもできる。このときには加工層であるSiO層に溝を設けることになるため、シリコンウエハ1を用いる場合に比べてSiO層を厚くすることが好ましい。 In addition, about the board | substrate 1 in the case of performing a thermal imprint, although the SiC substrate which is a board | substrate which has tolerance with respect to chlorine type gas was mentioned, the tolerance to chlorine type gas is comparatively given by giving the following devices. Weak silicon wafers can also be used. That is, instead of providing the conductive layer 2 on the silicon wafer 1, an SiO 2 layer is provided. Conductive layer 2 on top of the SiO 2 layer, by providing the anti-oxidation layer 3 protected, even as a conductive layer 2 and the oxide prevention layer 3 has been removed by chlorine gas, the SiO 2 layer is a silicon wafer 1 from a chlorine gas Will do. Then, the SiO 2 layer is removed with buffered hydrofluoric acid (hereinafter also referred to as BHF), that is, a mixed acid composed of ammonium fluoride and hydrofluoric acid. By doing so, a silicon wafer can also be used to produce a thermal imprint mold. Further, those having a SiO 2 layer as a working layer on the silicon wafer can be used as a substrate. At this time, since a groove is provided in the SiO 2 layer which is a processed layer, it is preferable to make the SiO 2 layer thicker than when the silicon wafer 1 is used.
 また、基板1の形状についてであるが、円盤形状であるのが好ましい。レジストを塗布する際、円盤基板1を回転させながらレジストを均一に塗布することができるためである。なお、円盤形状以外であっても良く、矩形、多角形、半円形状であってもよい。
 本実施形態においては、円盤形状の石英基板1を用いて説明する。
Further, as for the shape of the substrate 1, it is preferably a disc shape. This is because the resist can be applied uniformly while rotating the disk substrate 1 when applying the resist. The shape may be other than a disk shape, and may be a rectangle, a polygon, or a semicircle.
In the present embodiment, description will be made using a disk-shaped quartz substrate 1.
 次に、図1(b)に示すように、前記石英基板1をスパッタリング装置に導入する。そして本実施形態においては、タンタル(Ta)とハフニウム(Hf)の合金からなるターゲットをアルゴンガスでスパッタリングし、タンタル-ハフニウム合金からなる導電層2を成膜し、基板1上に形成される溝に対応する微細パターンを有するハードマスク層7の内の下層(導電層2)とするのが好ましい。タンタル-ハフニウム合金が好ましい理由としては、塩素系ガスを用いたドライエッチング処理によりエッチング加工が可能な材料であること、マスク製造の際の電子線描画時にチャージアップを防止するために必要な導電性を持たせることができること、そしてそれによってアライメント時のコントラストを大きくとることができることが挙げられる。 Next, as shown in FIG. 1B, the quartz substrate 1 is introduced into a sputtering apparatus. In this embodiment, a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas to form a conductive layer 2 made of a tantalum-hafnium alloy, and a groove formed on the substrate 1 It is preferable to use the lower layer (conductive layer 2) of the hard mask layer 7 having a fine pattern corresponding to. The tantalum-hafnium alloy is preferable because it is a material that can be etched by a dry etching process using a chlorine-based gas, and the conductivity required to prevent charge-up when drawing an electron beam during mask manufacturing. Can be provided, and thereby the contrast at the time of alignment can be increased.
 なお、導電層2の材料としては、Taを主成分とする化合物の場合、TaHf、TaZr、TaHfZrなどのTa化合物やその合金が好適である。一方、ハフニウム(Hf)とジルコニウム(Zr)の少なくとも一方の元素又はその化合物(例えばHfZrなど)を選択することもでき、さらにこれらの材料をベース材料として、例えばB、Ge、Nb、Si、C、N等の副材料を加えた材料を選択することもできる。本実施形態においては、タンタル-ハフニウム(TaHf)合金からなる導電層2について説明する。 As a material for the conductive layer 2, in the case of a compound containing Ta as a main component, Ta compounds such as TaHf, TaZr, TaHfZr, and alloys thereof are suitable. On the other hand, at least one element of hafnium (Hf) and zirconium (Zr) or a compound thereof (for example, HfZr) can be selected, and these materials are used as base materials, for example, B, Ge, Nb, Si, C, and the like. , N and other sub-materials can be selected. In the present embodiment, the conductive layer 2 made of a tantalum-hafnium (TaHf) alloy will be described.
 次に、本実施形態においては、酸化防止の観点から前記導電層2に対して大気暴露は行わず、クロムターゲットをアルゴンと窒素の混合ガスでスパッタリングして窒化クロム層3を成膜し、微細パターンを有するハードマスク層7の内の上層(導電層用酸化防止層3)とするのが好ましい。この理由は以下の通りである。 Next, in the present embodiment, from the viewpoint of preventing oxidation, the conductive layer 2 is not exposed to the atmosphere, and a chromium target is sputtered with a mixed gas of argon and nitrogen to form a chromium nitride layer 3. The upper layer (antioxidant layer 3 for conductive layer) in the hard mask layer 7 having a pattern is preferably used. The reason is as follows.
 窒化クロム層3が導電層2上面に形成されることにより、下層である導電層2の酸化を防止することができる。具体的には、ハードマスク層7形成後に大気暴露される際、およびレジスト塗布工程におけるベーク処理の際に、タンタル-ハフニウム合金からなる導電層2の代わりに前記窒化クロム層3表面が主に酸化される。窒化クロム層3表面が酸化されている状態にて塩素系ガスでドライエッチングを行うと、導電層2の表面が酸化している場合に比べてはるかに大きなエッチング速度が得られる。しかも、マスク残存ハードマスク層除去前モールド10からインプリント用モールド20を作製する工程において、レジスト層4の除去で用いられるアンモニア水や過水硫酸などを用いて洗浄を行ったとしても、窒化クロム層3は十分な耐性を有する。また、酸化防止層3を窒化クロムとすることで、窒化クロム層をスパッタリングする際に酸素ガスを用いなくとも良くなり、残存酸素を減らすという点からも良い影響を与える。 By forming the chromium nitride layer 3 on the upper surface of the conductive layer 2, oxidation of the lower conductive layer 2 can be prevented. Specifically, the surface of the chromium nitride layer 3 is mainly oxidized in place of the conductive layer 2 made of a tantalum-hafnium alloy when exposed to the air after the hard mask layer 7 is formed and in the baking process in the resist coating process. Is done. When dry etching is performed with a chlorine-based gas in a state where the surface of the chromium nitride layer 3 is oxidized, a much higher etching rate can be obtained than when the surface of the conductive layer 2 is oxidized. Moreover, in the process of producing the imprint mold 20 from the mold 10 before removing the remaining mask layer, even if cleaning is performed using ammonia water or perhydrosulfuric acid used for removing the resist layer 4, chromium nitride is used. Layer 3 is sufficiently resistant. Further, when the oxidation preventing layer 3 is made of chromium nitride, it is not necessary to use oxygen gas when sputtering the chromium nitride layer, and this also has a positive effect from the viewpoint of reducing residual oxygen.
 なお、酸化防止層3の材料としては、成膜の際のスパッタリングにおいて酸素を用いなくて済む点からも窒化クロム(CrN)が好ましいが、それ以外でも酸化防止層として使用できる化合物であればよい。例えばモリブデン化合物、酸化クロム(CrO)、SiC、アモルファスカーボン、Alを用いてもよい。本実施形態においては、窒化クロム(CrN)からなる酸化防止層3について説明する。 The material of the antioxidant layer 3 is preferably chromium nitride (CrN) from the viewpoint that it is not necessary to use oxygen in sputtering during film formation, but any other compound that can be used as the antioxidant layer may be used. . For example, a molybdenum compound, chromium oxide (CrO), SiC, amorphous carbon, or Al may be used. In the present embodiment, the antioxidant layer 3 made of chromium nitride (CrN) will be described.
 こうして図1(b)に示すように、タンタル-ハフニウム合金層2を下層とし、窒化クロム層3を上層としたハードマスク層7を、石英基板1上に形成する。なお、本実施形態における「ハードマスク層」は、単一または複数の層からなり、パターンに対応する溝が形成される部分を保護することができ、溝のエッチングに用いられる層状のもののことを指すものとする。 Thus, as shown in FIG. 1B, a hard mask layer 7 with the tantalum-hafnium alloy layer 2 as the lower layer and the chromium nitride layer 3 as the upper layer is formed on the quartz substrate 1. The “hard mask layer” in the present embodiment is composed of a single layer or a plurality of layers, and can protect a portion where a groove corresponding to a pattern is formed, and is a layered layer used for etching a groove. Shall point to.
 次に、図1(c)に示すように、前記ハードマスク層7に対して電子線描画用のレジストを塗布し、レジスト層4を形成して本実施形態におけるインプリント用モールドの製造に用いられるマスクブランクスを作製する。電子線描画用のレジストとしては、その後のエッチング工程に適するものであればよい。 Next, as shown in FIG. 1C, an electron beam drawing resist is applied to the hard mask layer 7 to form a resist layer 4, which is used for manufacturing an imprint mold in this embodiment. Mask blanks to be manufactured. As a resist for electron beam drawing, any resist suitable for the subsequent etching process may be used.
 なお、レジスト層4がポジ型レジストであるならば、電子線描画した箇所が基板1上の溝の位置に対応し、レジスト層がネガ型レジストであるならば、その逆の位置となる。本実施形態においてはポジ型レジストを用いた場合、すなわちレジスト層4の上に描画している部分が、基板1における溝の位置に対応する場合について説明する。 If the resist layer 4 is a positive resist, the electron beam drawn position corresponds to the position of the groove on the substrate 1, and if the resist layer is a negative resist, the opposite position is obtained. In the present embodiment, a case where a positive resist is used, that is, a case where a portion drawn on the resist layer 4 corresponds to the position of a groove in the substrate 1 will be described.
 また、この時のレジスト層4の厚さは、ハードマスク層7のエッチングが完了するまで残存する程度の厚さであることが好ましい。描画パターン部分のハードマスク層7すなわち導電層2および酸化防止層3を除去する際、この部分のハードマスク層7のみならずレジスト層4も少なからず除去されていくためである。 In addition, the thickness of the resist layer 4 at this time is preferably a thickness that remains until the etching of the hard mask layer 7 is completed. This is because not only the hard mask layer 7 but also the resist layer 4 in this portion are removed when the hard mask layer 7, that is, the conductive layer 2 and the antioxidant layer 3 in the drawing pattern portion is removed.
 次に、電子線描画機を用いて、前記マスクブランクスのレジスト層4に微細パターンを描画する。この微細パターンはミクロンオーダーであってもよいが、近年の電子機器の性能という観点からはナノオーダーであってもよいし、最終製品の性能を考えると、その方が好ましい。 Next, a fine pattern is drawn on the resist layer 4 of the mask blank using an electron beam drawing machine. This fine pattern may be on the micron order, but may be on the nano order from the viewpoint of the performance of electronic devices in recent years, and this is preferable in view of the performance of the final product.
 微細パターン描画後、図1(d)に示すように、レジスト層4を現像し、レジストにおける電子線描画した部分を除去し、所望の微細パターンに対応するレジストパターンを形成する。この描画された微細パターンの位置は、最終的に基板1に加工される溝の位置に対応している。 1) After the fine pattern drawing, as shown in FIG. 1D, the resist layer 4 is developed, the electron beam drawn portion of the resist is removed, and a resist pattern corresponding to a desired fine pattern is formed. The position of the drawn fine pattern corresponds to the position of the groove to be finally processed on the substrate 1.
(第1のドライエッチング)
 次に、基板上にレジストパターンが形成された基板1を、ドライエッチング装置に導入する。通常ならば、実質的に酸素を含まない塩素ガスによる第1のドライエッチングを行い、レジスト層4が除去された部分の導電層2および酸化防止層3を除去する。
(First dry etching)
Next, the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus. Normally, the first dry etching with chlorine gas containing substantially no oxygen is performed to remove the conductive layer 2 and the antioxidant layer 3 in the portion where the resist layer 4 has been removed.
 しかしながらこのままだと先述のように、エッチング装置内の残存酸素により、第1のドライエッチング前に、酸化防止層3(CrN層)の表面が酸化されるのみならず、導電層2(TaHf層)すらも酸化されてしまうおそれがある。
 また、ドライエッチングの最中においても、エッチングにより酸化防止層3が除去されることにより、酸化防止層3で保護されていたはずの導電層2が酸化してしまうおそれがある。その結果、導電層2の表面に酸化被膜が形成され、エッチングの進行が妨げられてしまうおそれがある。
However, as described above, the remaining oxygen in the etching apparatus not only oxidizes the surface of the antioxidant layer 3 (CrN layer) before the first dry etching, but also the conductive layer 2 (TaHf layer). Even the oxidation may occur.
Further, even during dry etching, there is a possibility that the conductive layer 2 that should have been protected by the antioxidant layer 3 may be oxidized by removing the antioxidant layer 3 by etching. As a result, an oxide film is formed on the surface of the conductive layer 2 and the progress of etching may be hindered.
 そこで本実施形態におけるハードマスク層を除去する工程においては、還元性ガスを導入しながら第1のドライエッチングを行うことにより、前記溝形成部分以外の部分のハードマスク層を除去する。以下、この第1のドライエッチングについて詳述する。 Therefore, in the step of removing the hard mask layer in the present embodiment, the hard mask layer in a portion other than the groove forming portion is removed by performing the first dry etching while introducing the reducing gas. Hereinafter, the first dry etching will be described in detail.
 まず、基板上にレジストパターンが形成された基板1を、ドライエッチング装置に導入する。そして本実施形態においては、実質的に酸素を含んでいない還元性ガス雰囲気下で第1のドライエッチングを行う。なおこの際、第1のドライエッチングにおいてハードマスク層7を除去するためのガスとして塩素系ガスを用いても良いし、ハードマスク層除去に適するその他のハロゲン化物系ガスを用いても良い。ここで用いられる塩素系ガスとしては、Cl、BCl、HCl、これらの混合ガス又はこれらに添加ガスとして希ガス(He、Ar、Xeなど)を含むもの等が挙げられる。また、このドライエッチングにおいて酸素を含まない塩素ガスを用いることにより、導電層2であるTaHfの不要な酸化を抑制できる。そうすることで、ハードマスク層7全体のエッチングをスムーズに行うことができる。
 本実施形態においては、還元性ガスとともに塩素ガスを導入した場合について説明する。
First, the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus. In this embodiment, the first dry etching is performed in a reducing gas atmosphere that does not substantially contain oxygen. At this time, a chlorine-based gas may be used as a gas for removing the hard mask layer 7 in the first dry etching, or another halide-based gas suitable for removing the hard mask layer may be used. Examples of the chlorine-based gas used here include Cl 2 , BCl 3 , HCl, a mixed gas thereof, or a gas containing a rare gas (such as He, Ar, or Xe) as an additive gas. Further, by using a chlorine gas that does not contain oxygen in this dry etching, unnecessary oxidation of TaHf that is the conductive layer 2 can be suppressed. By doing so, the whole hard mask layer 7 can be etched smoothly.
In this embodiment, the case where chlorine gas is introduced together with the reducing gas will be described.
 このとき、前記還元性ガスとしては、還元性を有するものであればよいが例えば、酸素を含むことなく還元性を有する塩素系ガス、水素ガス、炭化水素系ガスなどが挙げられるが、その中でも三塩化硼素(BCl)を含むガスとすることが好ましい。その理由を含めて、推測される化学反応メカニズムについて説明する。 At this time, as the reducing gas, any reducing gas may be used, and examples thereof include a chlorine-based gas, a hydrogen gas, and a hydrocarbon-based gas that do not contain oxygen and include a reducing gas. A gas containing boron trichloride (BCl 3 ) is preferable. The presumed chemical reaction mechanism including the reason will be described.
 まず、第1のドライエッチング開始前、わずかに残存酸素が存在するエッチング装置内に、塩素ガスとBClガスを導入する。この際、両ガスを同時に投入してもよいが、窒化クロム層3が除去される程度にエッチングした後に、時間差を設けてBClガスを導入してもよい。こうすることにより、塩素ガスのみを用いて窒化クロム層3をエッチングすることになる。その結果、少なくとも窒化クロム層3の除去までは極めて安定してエッチングを進行させることができる。 First, before starting the first dry etching, chlorine gas and BCl 3 gas are introduced into an etching apparatus in which a slight residual oxygen exists. At this time, both gases may be supplied at the same time, but after etching to such an extent that the chromium nitride layer 3 is removed, a BCl 3 gas may be introduced with a time difference. By doing so, the chromium nitride layer 3 is etched using only chlorine gas. As a result, the etching can proceed extremely stably until at least the removal of the chromium nitride layer 3.
 このようにして窒化クロム層3をドライエッチングにより除去した後、導電層であるTaHf層2の表面が露出し、残存酸素がTaHf層2表面を酸化させようとする。このとき、エッチング装置内に導入されたBClガスは、以下の2通りにて残存酸素を捕集するものと推測される。 After the chromium nitride layer 3 is removed by dry etching in this way, the surface of the TaHf layer 2 that is a conductive layer is exposed, and residual oxygen attempts to oxidize the surface of the TaHf layer 2. At this time, it is presumed that the BCl 3 gas introduced into the etching apparatus collects residual oxygen in the following two ways.
 まず1つは、ドライエッチングによる放電によって、BClが酸素と反応して酸化硼素(B)になることにより、残存酸素を捕集してTaHf層2表面が酸化しないようにしていると推測される。 First, BCl 3 reacts with oxygen to become boron oxide (B x O y ) by discharge due to dry etching, thereby collecting residual oxygen and preventing the surface of TaHf layer 2 from being oxidized. It is guessed.
 もう1つは、TaHf層2表面が仮に酸化されたとしても、酸化による影響がエッチングにおいて顕在化する前に酸化表面を還元するものと推測される。また、ここで酸化表面を還元することにより、酸化表面を還元し、還元性ガスを添加することによって、表面酸化層を還元させながら、エッチングが進行していると推測される。 Second, even if the surface of the TaHf layer 2 is oxidized, it is presumed that the oxidized surface is reduced before the influence of oxidation becomes apparent in etching. Further, it is presumed that the etching progresses while reducing the oxidized surface by reducing the oxidized surface and adding the reducing gas to reduce the oxidized surface layer.
 このように、マスクブランクスにおけるパターン部のエッチング(第1のドライエッチング)にせよ、さらには後述するインプリント用モールド作製直前の残りハードマスク層除去のためのエッチング(第3のドライエッチング)にせよ、ハードマスク層7の除去の際に還元性ガスを導入することにより、極めて効率的に残存酸素をエッチング装置内からなくすことができる。 As described above, the etching of the pattern portion in the mask blank (first dry etching), or the etching for removing the remaining hard mask layer immediately before the imprint mold fabrication described later (third dry etching) is performed. By introducing a reducing gas when removing the hard mask layer 7, residual oxygen can be eliminated from the etching apparatus very efficiently.
 これにより、図1(e)に示すように、微細パターンを有するハードマスク層7を形成する。なお、この時のエッチング終点は、反射光学式の終点検出器を用いることで判別する。
 なお、「実質的に酸素を含まない」とは「エッチング装置内の酸素含有量が5%以下となる程度に酸素を含まない」ことを指すものとする。また、実質的に酸素を含まないガスを用いてドライエッチングを行うことを、単にドライエッチングともいう。
Thereby, as shown in FIG. 1E, a hard mask layer 7 having a fine pattern is formed. Note that the etching end point at this time is determined by using a reflection optical end point detector.
Note that “substantially no oxygen” means “not containing oxygen to the extent that the oxygen content in the etching apparatus is 5% or less”. In addition, performing dry etching using a gas that does not substantially contain oxygen is also simply referred to as dry etching.
(第2のドライエッチング)
 続いて、第1のドライエッチングで用いられたガスを真空排気した後、同じドライエッチング装置内で、フッ素系ガスを用いた第2のドライエッチングを、石英基板1に対して行う。この際、前記ハードマスク層7をマスクとして石英基板1をエッチング加工し、図1(f)に示す微細パターンに対応した溝を基板に施す。その後、アルカリ溶液や酸溶液にてレジストを除去する。
(Second dry etching)
Subsequently, after evacuating the gas used in the first dry etching, the quartz substrate 1 is subjected to a second dry etching using a fluorine-based gas in the same dry etching apparatus. At this time, the quartz substrate 1 is etched using the hard mask layer 7 as a mask, and grooves corresponding to the fine pattern shown in FIG. Thereafter, the resist is removed with an alkaline solution or an acid solution.
 ここで用いられるフッ素系ガスとしては、C(例えば、CF、C、C
)、CHF3、これらの混合ガス又はこれらに添加ガスとして希ガス(He、Ar、Xeなど)を含むもの等が挙げられる。
Examples of the fluorine-based gas used here include C x F y (for example, CF 4 , C 2 F 6 , C 3
F 8 ), CHF 3 , mixed gases thereof, or those containing noble gases (He, Ar, Xe, etc.) as additive gases.
 こうして図1(f)に示すように、微細パターンに対応する溝加工が石英基板1に施され、微細パターンを有するハードマスク層7が石英基板1の溝以外の部分上に形成され、過水硫酸などの酸溶液を用いてレジスト除去することによって、インプリント用モールド20のための残存ハードマスク層除去前モールド10が作製される。 Thus, as shown in FIG. 1 (f), the groove processing corresponding to the fine pattern is performed on the quartz substrate 1, and the hard mask layer 7 having the fine pattern is formed on the portion other than the groove of the quartz substrate 1. By removing the resist using an acid solution such as sulfuric acid, the residual hard mask layer pre-removal mold 10 for the imprint mold 20 is produced.
(第3のドライエッチング)
 このように作製された残存ハードマスク層除去前モールド10に対し、従来ならば、引き続いて残存ハードマスク層除去前モールド10上に残存するハードマスク層7をドライエッチングにて除去する工程(残存ハードマスク層除去工程)が行われ、それによりインプリント用モールド20が作製される。
(Third dry etching)
For the mold 10 before removal of the remaining hard mask layer thus manufactured, conventionally, a step of removing the hard mask layer 7 remaining on the mold 10 before removal of the remaining hard mask layer by dry etching (residual hard mask layer). A mask layer removing step) is performed, whereby the imprint mold 20 is manufactured.
 しかしながら、本実施形態においては第1のドライエッチングと同様に、還元性ガスを導入しながら第3のドライエッチングを行うことにより、残存ハードマスク層除去前モールド10上に残存するハードマスク層7を除去する。 However, in the present embodiment, similarly to the first dry etching, the hard mask layer 7 remaining on the mold 10 before the remaining hard mask layer is removed by performing the third dry etching while introducing the reducing gas. Remove.
 第3のドライエッチングの基本的な手順、ハードマスク層を除去するドライエッチング用のガスや還元性ガス、ドライエッチングの進行のメカニズムについては、上述の第1ドライエッチングと同様である。すなわち、本実施形態においては、ハードマスク層を除去するドライエッチング用のガスを塩素ガスとし、還元性ガスをBClとし、第2のドライエッチングで用いられたガスを真空排気した後で、塩素ガスおよびBClガスをエッチング装置内に導入しながらドライエッチングを行う。 The basic procedure of the third dry etching, the dry etching gas for removing the hard mask layer, the reducing gas, and the mechanism of the progress of the dry etching are the same as those of the first dry etching described above. That is, in this embodiment, the dry etching gas for removing the hard mask layer is chlorine gas, the reducing gas is BCl 3, and the gas used in the second dry etching is evacuated, and then the chlorine Dry etching is performed while introducing a gas and BCl 3 gas into the etching apparatus.
 以上の第3のドライエッチングを経て、前記溝形成部分以外の部分のハードマスク層7を除去した後、必要があれば基板1の洗浄等を行う。このようにしてインプリント用モールド20を完成させる。 After removing the hard mask layer 7 other than the groove forming portion through the third dry etching described above, the substrate 1 is cleaned if necessary. In this way, the imprint mold 20 is completed.
 なお、本実施形態においては、第1~第3のドライエッチングを行ったが、導電層、酸化防止層以外のハードマスク層構成物質に応じて、別途ドライエッチングを、第1~第3のドライエッチングの間に追加しても良い。 In the present embodiment, the first to third dry etching is performed. However, the dry etching is separately performed according to the hard mask layer constituent materials other than the conductive layer and the antioxidant layer. It may be added during etching.
 また、図2に示すように、インプリント用モールド20を台座構造にするのならば、以下の工程を残存ハードマスク層除去前モールド10形成後、残存ハードマスク層除去工程前に行ってもよい。
 すなわち、上記石英に溝加工を施した残存ハードマスク層除去前モールド10上に台座構造用レジスト6を塗布し、紫外光による露光と現像を行う(図2(a))。そして、上記レジストパターンを形成した残存ハードマスク層除去前モールド10について、フッ化水素酸とフッ化アンモニウムの混合液にてウェットエッチングを行い、さらに所定の酸洗浄によりレジストを除去する(図2(b))。こうして、台座構造を有する残存ハードマスク層除去前モールド10を作製し(図2(c))、上述のように還元性ガスが導入されたドライエッチングを経てインプリント用モールド20を作製してもよい。
As shown in FIG. 2, if the imprint mold 20 has a pedestal structure, the following steps may be performed after the formation of the residual hard mask layer removal mold 10 and before the remaining hard mask layer removal step. .
That is, the base structure resist 6 is applied on the mold 10 before removing the remaining hard mask layer in which the groove processing is performed on the quartz, and exposure and development with ultraviolet light are performed (FIG. 2A). Then, the mold 10 before removal of the remaining hard mask layer on which the resist pattern is formed is wet-etched with a mixed solution of hydrofluoric acid and ammonium fluoride, and the resist is removed by predetermined acid cleaning (FIG. 2 ( b)). In this way, the mold 10 before removing the remaining hard mask layer having the pedestal structure is manufactured (FIG. 2C), and the imprint mold 20 is manufactured through the dry etching in which the reducing gas is introduced as described above. Good.
 以上のような本実施形態に係るインプリント用モールド20の製造方法においては、以下の効果を得ることができる。
 まず、ハードマスク層7および基板1に対するドライエッチングにおいて実質的に酸素を含まないガスを用いることにより、エッチング装置内の酸素を相当量少なくする。その上で残存酸素に対してはさらに、ハードマスク層7に対するパターン形成エッチングの時点から、還元性ガスが存在する状況下でドライエッチングを行う。これにより、導電層2の表面が酸化されても、酸化による影響がエッチングにおいて顕在化するまでの間に、導電層2の酸化表面を還元できる。つまり、還元性ガスが残存酸素そのものを捕集することにより表面酸化をかなりの部分で防止すると同時に、表面酸化した際にも酸化前に戻すことができる。そのため、ドライエッチングに際して、極めて効率的に残存酸素を捕集することができる。しかもこの効果は、パターン形成時点のドライエッチングのみならず、残存ハードマスク層除去前モールドから残存ハードマスク層を除去する際にも発揮される。その結果、ハードマスク層7に対するドライエッチングをスムーズに行うことができる。その結果、高いパターン精度で微細パターンに対応する溝を基板1に形成することができ、品質の良いインプリント用モールド20を提供することができる。
In the manufacturing method of the imprint mold 20 according to the present embodiment as described above, the following effects can be obtained.
First, by using a gas that does not substantially contain oxygen in the dry etching for the hard mask layer 7 and the substrate 1, the amount of oxygen in the etching apparatus is reduced considerably. In addition, the remaining oxygen is further subjected to dry etching in the presence of a reducing gas from the time of pattern formation etching on the hard mask layer 7. Thereby, even if the surface of the conductive layer 2 is oxidized, the oxidized surface of the conductive layer 2 can be reduced before the influence of the oxidation becomes apparent in the etching. In other words, the reductive gas collects the residual oxygen itself, thereby preventing surface oxidation at a considerable portion, and at the same time, returning to the state before oxidation even when the surface is oxidized. Therefore, residual oxygen can be collected very efficiently during dry etching. Moreover, this effect is exhibited not only in dry etching at the time of pattern formation, but also in removing the remaining hard mask layer from the mold before removing the remaining hard mask layer. As a result, dry etching on the hard mask layer 7 can be performed smoothly. As a result, a groove corresponding to a fine pattern can be formed in the substrate 1 with high pattern accuracy, and a high-quality imprint mold 20 can be provided.
 このようなインプリント用モールド20は熱インプリントにも光インプリントにも用いることができ、さらにはナノインプリント技術にも応用することができる。特に、インプリント技術を用いて作製されるDTRメディアに本実施形態を好適に応用することができる。 Such an imprint mold 20 can be used for thermal imprinting and optical imprinting, and can also be applied to nanoimprint technology. In particular, the present embodiment can be suitably applied to DTR media manufactured using imprint technology.
<実施の形態2>
 先に述べた実施の形態1においては、タンタル-ハフニウム合金層からなる導電層2の上に、窒化クロムからなる酸化防止層3が設けられている。
 その一方、本実施形態においては酸化防止層を設けず、導電層2の上にレジスト層4を直接設けた場合について、本実施形態に係るインプリント用モールド20の製造方法を示す図である図3に基づき説明する。
<Embodiment 2>
In the first embodiment described above, the antioxidant layer 3 made of chromium nitride is provided on the conductive layer 2 made of the tantalum-hafnium alloy layer.
On the other hand, in this embodiment, it is a figure which shows the manufacturing method of the mold 20 for imprinting concerning this embodiment about the case where the antioxidant layer is not provided but the resist layer 4 is provided directly on the conductive layer 2. 3 will be described.
 まず、実施の形態1と同様に、インプリント用モールド20のための基板1を用意する(図3(a))。この基板1は、実施の形態1の基板と同様の基板を用いればよい。本実施形態においては、円盤形状の石英基板1を用いて説明する。以降、特筆しない箇所については、実施の形態1と同様の内容とする。 First, as in the first embodiment, the substrate 1 for the imprint mold 20 is prepared (FIG. 3A). The substrate 1 may be a substrate similar to the substrate in the first embodiment. In the present embodiment, description will be made using a disk-shaped quartz substrate 1. Thereafter, the parts that are not specially mentioned are the same as those in the first embodiment.
 次に、前記石英基板1をスパッタリング装置に導入する。そして、タンタル(Ta)とハフニウム(Hf)の合金からなるターゲットをアルゴンガスでスパッタリングし、タンタル-ハフニウム合金からなる導電層2を石英基板1上に成膜する(図3(b))。 Next, the quartz substrate 1 is introduced into a sputtering apparatus. Then, a target made of an alloy of tantalum (Ta) and hafnium (Hf) is sputtered with argon gas, and a conductive layer 2 made of tantalum-hafnium alloy is formed on the quartz substrate 1 (FIG. 3B).
 次に、前記導電層2に対して電子線描画用のレジストを塗布し、レジスト層4を形成して、本実施形態に係るインプリント用モールドの製造に用いられるマスクブランクスを作製する(図3(c))。 Next, a resist for electron beam drawing is applied to the conductive layer 2 to form a resist layer 4 to produce mask blanks used for manufacturing the imprint mold according to this embodiment (FIG. 3). (C)).
 次に、電子線描画機を用いて、前記・BR>}スクブランクスのレジスト層4にナノオーダーの微細パターンを描画する。 Next, a nano-order fine pattern is drawn on the resist layer 4 of the .BR>} blank using an electron beam drawing machine.
 微細パターン描画後、レジスト層4を現像し、所望の微細パターンに対応するレジストパターンを形成する(図3(d))。 After the fine pattern is drawn, the resist layer 4 is developed to form a resist pattern corresponding to the desired fine pattern (FIG. 3D).
(第1のドライエッチング)
 次に、基板上にレジストパターンが形成された基板1を、ドライエッチング装置に導入する。通常ならば、実質的に酸素を含まない塩素ガスによる第1のドライエッチングを行ったとしても、酸化防止層が存在しないため、わずかに存在する残存酸素により導電層2の表面が酸化されてしまう。その結果、エッチングの進行が抑制されてしまう。
(First dry etching)
Next, the substrate 1 having a resist pattern formed on the substrate is introduced into a dry etching apparatus. Normally, even if the first dry etching with chlorine gas containing substantially no oxygen is performed, the surface of the conductive layer 2 is oxidized by the remaining residual oxygen because there is no antioxidant layer. . As a result, the progress of etching is suppressed.
 しかしながら、実施の形態1と同様に、本実施形態においては、ハードマスク層を除去する工程において還元性ガスを用いることにより、エッチング装置内の残存酸素をドライエッチング開始時から相当量減らすことができる。そのため、導電層2の上に酸化防止層を設けなくとも、導電層2の表面の酸化を抑制することができる。 However, as in the first embodiment, in this embodiment, by using a reducing gas in the process of removing the hard mask layer, the residual oxygen in the etching apparatus can be reduced by a considerable amount from the start of dry etching. . Therefore, oxidation of the surface of the conductive layer 2 can be suppressed without providing an antioxidant layer on the conductive layer 2.
 上記のような第1のドライエッチングにより、微細パターンを有する導電層2を形成する(図3(e))。 The conductive layer 2 having a fine pattern is formed by the first dry etching as described above (FIG. 3E).
(第2のドライエッチング)
 続いて、第1のドライエッチングで用いられたガスを真空排気した後、同じドライエッチング装置内で、フッ素系ガスを用いた第2のドライエッチングを、石英基板1に対して行う。この際、前記導電層7をマスクとして石英基板1をエッチング加工し、微細パターンに対応した溝を基板に施す(図3(f))。その後、アルカリ溶液や酸溶液にてレジストを除去する。
(Second dry etching)
Subsequently, after evacuating the gas used in the first dry etching, the quartz substrate 1 is subjected to a second dry etching using a fluorine-based gas in the same dry etching apparatus. At this time, the quartz substrate 1 is etched using the conductive layer 7 as a mask, and a groove corresponding to the fine pattern is formed on the substrate (FIG. 3F). Thereafter, the resist is removed with an alkaline solution or an acid solution.
 こうして図3(f)に示すように、微細パターンに対応する溝加工が石英基板1に施され、微細パターンを有する導電層7のみからなるハードマスク層が石英基板1の溝以外の部分上に形成され、インプリント用モールド20のための残存ハードマスク層除去前モールド10が作製される。 Thus, as shown in FIG. 3 (f), the groove processing corresponding to the fine pattern is performed on the quartz substrate 1, and the hard mask layer composed only of the conductive layer 7 having the fine pattern is formed on the portion other than the groove of the quartz substrate 1. Thus, the mold 10 before removing the remaining hard mask layer for the imprint mold 20 is produced.
(第3のドライエッチング)
 このように作製された導電層除去前モールド10に対し、本実施形態においては第1のドライエッチングと同様に、還元性ガスを用いた第3のドライエッチングにより、導電層除去前モールド10上に残存している導電層2を除去する。
(Third dry etching)
In the present embodiment, the mold 10 before removing the conductive layer is formed on the mold 10 before removing the conductive layer by the third dry etching using a reducing gas in the present embodiment, similarly to the first dry etching. The remaining conductive layer 2 is removed.
 第3のドライエッチングの基本的な手順、ハードマスク層を除去するドライエッチング用のガスや還元性ガス、ドライエッチングの進行のメカニズムについては、上述の第1ドライエッチングや実施の形態1と同様である。 The basic procedure of the third dry etching, the dry etching gas and reducing gas for removing the hard mask layer, and the mechanism of the progress of the dry etching are the same as those in the first dry etching and the first embodiment. is there.
 以上の第3のドライエッチングを経て、導電層除去前モールド10上に残存している導電層2を除去した後、必要があれば基板1の洗浄等を行う。このようにしてインプリント用モールド20を完成させる。 After removing the conductive layer 2 remaining on the mold 10 before removing the conductive layer through the above third dry etching, the substrate 1 is washed if necessary. In this way, the imprint mold 20 is completed.
 以上のような本実施形態に係るインプリント用モールド20の製造方法においては、マスクブランクス作製の際に酸化防止層を設ける工程を省略するこ
とができる上に、インプリント用モールドに使用される物質の種類を減らすことができる。その結果、酸化防止層用の処理工程が不要となって積層工程を簡略化できる。最終的にはインプリント用モールドの製造コストを削減し、かつ歩留まりを向上させることができる。
In the manufacturing method of the imprint mold 20 according to the present embodiment as described above, the step of providing an antioxidizing layer can be omitted in the production of mask blanks, and the substance used for the imprint mold Can reduce the kind of. As a result, the processing step for the anti-oxidation layer is not necessary, and the lamination step can be simplified. Ultimately, the manufacturing cost of the imprint mold can be reduced and the yield can be improved.
 以上、本発明に係る実施の形態を挙げたが、上記の開示内容は、本発明の例示的な実施形態を示すものである。本発明の範囲は、上記の例示的な実施形態に限定されるものではない。先に述べたとおり、発明についての説明の都合上、本明細書では、溝加工をラインアンドスペースとして記載している。その一方で、溝加工の残余の部分(又は溝加工部分)が円柱等形状となるビットパターンとする事が出来る等、本明細書中に明示的に記載されている又は示唆されているか否かに関わらず、当業者であれば、本明細書の開示内容に基づいて本発明の実施形態に種々の改変を加えて実施し得る。 As mentioned above, although embodiment which concerns on this invention was mentioned, said content of an indication shows illustrative embodiment of this invention. The scope of the present invention is not limited to the exemplary embodiments described above. As described above, for convenience of explanation of the invention, the groove processing is described as line and space in this specification. On the other hand, whether or not it is explicitly described or suggested in this specification, such as a bit pattern in which the remaining portion of groove processing (or groove processing portion) can be a cylindrical shape, etc. Regardless, those skilled in the art can make various modifications to the embodiments of the present invention based on the disclosure of the present specification.
 次に実施例を示し、本発明について具体的に説明する。もちろんこの発明は、以下の実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to examples. Of course, the present invention is not limited to the following examples.
 <実施例1>(酸化防止層を設ける場合の、インプリント用モールドの製造方法)
 本実施例においては、基板1として円盤状合成石英基板(外径150mm、厚み0.7mm)を用いた(図1(a))。この石英基板1をスパッタリング装置に導入した。そして、タンタル(Ta)とハフニウム(Hf)の合金(Ta:Hf=80:20原子比)からなるターゲットをアルゴンガスでスパッタリングし、7nmの厚みのタンタル-ハフニウム合金からなる導電層2を成膜した(図1(b))。
<Example 1> (Method for producing an imprint mold when an antioxidant layer is provided)
In this example, a disc-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm) was used as the substrate 1 (FIG. 1A). This quartz substrate 1 was introduced into a sputtering apparatus. Then, a target made of an alloy of tantalum (Ta) and hafnium (Hf) (Ta: Hf = 80: 20 atomic ratio) is sputtered with argon gas to form a conductive layer 2 made of a tantalum-hafnium alloy having a thickness of 7 nm. (FIG. 1B).
 その後、大気暴露は行わず、クロムターゲットをアルゴンと窒素の混合ガスでスパッタリングし、窒化クロム層3(クロム:窒素=35:65原子比)を2.5nmの厚みで成膜した。こうしてタンタル-ハフニウム合金層2と窒化クロム層3とを有するハードマスク層7を形成した石英基板1上に、電子線描画用のレジスト膜4(日本ゼオン社製ZEP520A)をスピンコートにより45nmの厚みに塗布し、ベーク処理を行った(図1(c))。 Thereafter, the atmosphere was not exposed to air, and the chromium target was sputtered with a mixed gas of argon and nitrogen to form a chromium nitride layer 3 (chromium: nitrogen = 35: 65 atomic ratio) with a thickness of 2.5 nm. On the quartz substrate 1 on which the hard mask layer 7 having the tantalum-hafnium alloy layer 2 and the chromium nitride layer 3 is thus formed, an electron beam drawing resist film 4 (ZEP520A manufactured by Nippon Zeon Co., Ltd.) is spin-coated to a thickness of 45 nm. Then, baking was performed (FIG. 1 (c)).
 次に、電子線描画機(加圧電圧100kV)を用いて、前記マスクブランクスのレジスト膜4にライン30nmかつスペース60nmの周期構造のラインアンドスペースパターンを描画した後、レジスト膜4を現像して微細パターンを形成した(図1(d))。 Next, a line and space pattern having a periodic structure with a line of 30 nm and a space of 60 nm is drawn on the resist film 4 of the mask blank using an electron beam drawing machine (pressurized voltage 100 kV), and then the resist film 4 is developed. A fine pattern was formed (FIG. 1 (d)).
 次に、レジストパターンを有するハードマスク層7が形成された基板1をドライエッチング装置に導入し、BClガスとClガスとを同時に導入しながら、実質的に酸素を含まないドライエッチング(BCl:Cl=1:5(流量比))を行った。そして、タンタル-ハフニウム合金膜(導電層2)と窒化クロム層3の積層からなる微細パターンを有するハードマスク層7を形成した(図1(e))。 Next, the substrate 1 on which the hard mask layer 7 having a resist pattern is formed is introduced into a dry etching apparatus, and dry etching (BCl substantially free of oxygen) is introduced while simultaneously introducing BCl 3 gas and Cl 2 gas. 3 : Cl 2 = 1: 5 (flow rate ratio)). Then, a hard mask layer 7 having a fine pattern composed of a laminate of a tantalum-hafnium alloy film (conductive layer 2) and a chromium nitride layer 3 was formed (FIG. 1 (e)).
 続いて、ハードマスク層7に対するドライエッチングで用いられたガスを真空排気した後、同じドライエッチング装置内で、フッ素系ガスを用いたドライエッチング(CHF:Ar=1:9体積比)を、石英基板1に対して行った。この際、前記ハードマスク層7をマスクとして石英基板1をエッチング加工し、図1(f)に示すように、微細パターンに対応した溝を基板に施した。 Subsequently, after evacuating the gas used in the dry etching for the hard mask layer 7, in the same dry etching apparatus, dry etching using a fluorine-based gas (CHF 3 : Ar = 1: 9 volume ratio) is performed. This was performed on the quartz substrate 1. At this time, the quartz substrate 1 was etched using the hard mask layer 7 as a mask, and grooves corresponding to a fine pattern were formed on the substrate as shown in FIG.
 この時、基板1の溝の深さが70nmになるようエッチング時間を調整した。具体的には、230秒、エッチングを行った。ここでパターンの断面形状を確認するため、上記と同様に作製した評価用のブランクスを破断し、走査型電子顕微鏡によるパターン断面の観察を行ったところ、レジストパターンが消失し窒化クロム層3の表面が露出していた。窒化クロム層3の膜厚は、エッチング前の2.5nmに対して、約1nmに減少していたが、石英基板1の溝の幅が、上記タンタル-ハフニウム合金層2と窒化クロム層3とを有するハードマスク層7からなる微細パターンの幅とほとんど同じであること、および石英基板1の溝の深さが均一であることを確認した。 At this time, the etching time was adjusted so that the groove depth of the substrate 1 was 70 nm. Specifically, etching was performed for 230 seconds. Here, in order to confirm the cross-sectional shape of the pattern, the evaluation blanks produced in the same manner as above were broken and the cross-section of the pattern was observed with a scanning electron microscope. As a result, the resist pattern disappeared and the surface of the chromium nitride layer 3 Was exposed. The film thickness of the chromium nitride layer 3 was reduced to about 1 nm with respect to 2.5 nm before the etching, but the width of the groove of the quartz substrate 1 was changed to the tantalum-hafnium alloy layer 2, the chromium nitride layer 3, and the like. It was confirmed that the width of the fine pattern composed of the hard mask layer 7 having the same is almost the same as that of the fine pattern and that the groove depth of the quartz substrate 1 is uniform.
 そして、濃硫酸と過酸化水素水からなる過水硫酸(濃硫酸:過酸化水素水=2:1体積比)を用いてレジスト層4を除去し、本実施例におけるインプリント用モールド20の製造のための残存ハードマスク層除去前モールド10を得た(図1(f))。 Then, the resist layer 4 is removed using perhydrosulfuric acid (concentrated sulfuric acid: hydrogen peroxide solution = 2: 1 volume ratio) composed of concentrated sulfuric acid and hydrogen peroxide solution, and the imprint mold 20 in this embodiment is manufactured. A mold 10 for removing the remaining hard mask layer for removal was obtained (FIG. 1 (f)).
 その後、真空排気した上で、残存ハードマスク層除去前モールド10に対して、BClガスとClガスとを同時に導入しながら、実質的に酸素を含まないドライエッチング(BCl:Cl=1:4(流量比))を行った。そして、基板上のハードマスク層7を除去した、本実施例におけるインプリント用モールド20を作製した(図1(g))。 After that, after vacuum evacuation, dry etching substantially free of oxygen (BCl 3 : Cl 2 =) while simultaneously introducing BCl 3 gas and Cl 2 gas into the mold 10 before removing the remaining hard mask layer. 1: 4 (flow rate ratio)). Then, an imprint mold 20 in the present example, in which the hard mask layer 7 on the substrate was removed, was produced (FIG. 1 (g)).
 <実施例2>(酸化防止層を設けない場合の、インプリント用モールドの製造方法)
 本実施例においては、実施例1と同様に、基板1として円盤状合成石英基板(外径150mm、厚み0.7mm)を用いた(図3(a))。この石英基板1をスパッタリング装置に導入した。そして、タンタル(Ta)とハフニウム(Hf)の合金(Ta:Hf=80:20原子比)からなるターゲットをアルゴンガスでスパッタリングし、7nmの厚みのタンタル-ハフニウム合金からなる導電層2を成膜した(図3(b))。
<Example 2> (Method for producing imprint mold when no antioxidant layer is provided)
In this example, a disc-shaped synthetic quartz substrate (outer diameter 150 mm, thickness 0.7 mm) was used as the substrate 1 as in Example 1 (FIG. 3A). This quartz substrate 1 was introduced into a sputtering apparatus. Then, a target made of an alloy of tantalum (Ta) and hafnium (Hf) (Ta: Hf = 80: 20 atomic ratio) is sputtered with argon gas to form a conductive layer 2 made of a tantalum-hafnium alloy having a thickness of 7 nm. (FIG. 3B).
 その後、本実施例においては酸化防止層を導電層2上に設けずかつ大気暴露を行わないまま、導電層2を形成した石英基板1上に、電子線描画用のレジスト膜4(日本ゼオン社製ZEP520A)をスピンコートにより45nmの厚みに塗布し、ベーク処理を行った(図3(c))。 Thereafter, in the present embodiment, an anti-oxidation layer is not provided on the conductive layer 2 and exposure to the atmosphere is not performed. On the quartz substrate 1 on which the conductive layer 2 is formed, a resist film 4 for electron beam drawing (Zeon Corporation) ZEP520A) was applied by spin coating to a thickness of 45 nm and baked (FIG. 3C).
 次に、実施例1と同様に、電子線描画機(加速電圧100kV)を用いて、前記マスクブランクスのレジスト膜4に20nm周期構造のラインアンドスペースパターンを描画した後、レジスト膜4を現像して微細パターンを形成した(図3(d))。 Next, in the same manner as in Example 1, a line and space pattern having a 20 nm periodic structure was drawn on the resist film 4 of the mask blank using an electron beam drawing machine (acceleration voltage 100 kV), and then the resist film 4 was developed. Thus, a fine pattern was formed (FIG. 3D).
 次に、レジストパターンを有するタンタル-ハフニウム合金層2が形成された基板1をドライエッチング装置に導入し、BClガスとClガスとを同時に導入しながら、実質的に酸素を含まないドライエッチング(BCl:Cl=1:5(流量比))を行った。そして、微細パターンを有する導電層2を形成した(図3(e))。 Next, the substrate 1 on which the tantalum-hafnium alloy layer 2 having a resist pattern is formed is introduced into a dry etching apparatus, and BCl 3 gas and Cl 2 gas are introduced simultaneously, and dry etching substantially free of oxygen is performed. (BCl 3 : Cl 2 = 1: 5 (flow rate ratio)). And the conductive layer 2 which has a fine pattern was formed (FIG.3 (e)).
 続いて、ハードマスク層7に対するドライエッチングで用いられたガスを真空排気した後、同じドライエッチング装置内で、フッ素系ガスを用いたドライエッチング(CHF:Ar=1:9体積比)を、石英基板1に対して行った。この際、前記ハードマスク層7をマスクとして石英基板1をエッチング加工し、図3(f)に示すように、微細パターンに対応した溝を基板に施した。 Subsequently, after evacuating the gas used in the dry etching for the hard mask layer 7, in the same dry etching apparatus, dry etching using a fluorine-based gas (CHF 3 : Ar = 1: 9 volume ratio) is performed. This was performed on the quartz substrate 1. At this time, the quartz substrate 1 was etched using the hard mask layer 7 as a mask, and grooves corresponding to a fine pattern were formed on the substrate as shown in FIG.
 この時、実施例1と同様に、基板1の溝の深さが70nmになるようエッチング時間を調整した。具体的には、270秒、エッチングを行った。ここでパターンの断面形状を確認するため、上記と同様に作製した評価用のブランクスを破断し、走査型電子顕微鏡によるパターン断面の観察を行ったところ、レジストパターンが消失しタンタル-ハフニウム合金層2の表面が露出していた。石英基板1の溝の幅が、上記タンタル-ハフニウム合金層2からなる微細パターンの幅とほとんど同じであること、および石英基板1の溝の深さが均一であることを確認した。 At this time, similarly to Example 1, the etching time was adjusted so that the groove depth of the substrate 1 was 70 nm. Specifically, etching was performed for 270 seconds. Here, in order to confirm the cross-sectional shape of the pattern, the evaluation blanks produced in the same manner as above were broken, and the pattern cross-section was observed with a scanning electron microscope. As a result, the resist pattern disappeared and the tantalum-hafnium alloy layer 2 The surface of was exposed. It was confirmed that the width of the groove of the quartz substrate 1 was almost the same as the width of the fine pattern made of the tantalum-hafnium alloy layer 2 and that the depth of the groove of the quartz substrate 1 was uniform.
 そして、濃硫酸と過酸化水素水からなる過水硫酸(濃硫酸:過酸化水素水=2:1体積比)を用いてレジスト層4を除去し、本実施例におけるインプリント用モールド20の製造のための残存ハードマスク層除去前モールド10を得た(図3(f))。 Then, the resist layer 4 is removed using perhydrosulfuric acid (concentrated sulfuric acid: hydrogen peroxide solution = 2: 1 volume ratio) composed of concentrated sulfuric acid and hydrogen peroxide solution, and the imprint mold 20 in this embodiment is manufactured. A mold 10 for removing the remaining hard mask layer for removal was obtained (FIG. 3F).
 その後、真空排気した上で、導電層除去前モールド10に対して、BClガスとClガスとを同時に導入しながら、実質的に酸素を含まないドライエッチング(BCl:Cl=1:4(流量比))を行った。そして、基板上のタンタル-ハフニウム合金層2を除去した、本実施例におけるインプリント用モールド20を作製した(図3(g))。 Then, after evacuating, dry etching substantially free of oxygen (BCl 3 : Cl 2 = 1: 1) while simultaneously introducing BCl 3 gas and Cl 2 gas into the mold 10 before removing the conductive layer. 4 (flow rate ratio)). Then, an imprint mold 20 according to the present example from which the tantalum-hafnium alloy layer 2 on the substrate was removed was produced (FIG. 3G).
 <比較例>
 上述の実施例と比較するために、比較例においては、ハードマスク層に対するエッチングにおいてBClガスを導入することなく、ハードマスク層を除去した。それ以外は実施例と同様に比較例の試料を作成した。
<Comparative example>
For comparison with the above-described example, in the comparative example, the hard mask layer was removed without introducing BCl 3 gas in the etching of the hard mask layer. Other than that, the sample of a comparative example was created like the Example.
 <評価>
 実施例1および比較例により得られたインプリント用モールドについて、走査型電子顕微鏡を用いて観察した。その結果を図4に示す。図4(a)は実施例1、(b)は比較例におけるインプリント用モールドの表面を示す写真である。
<Evaluation>
The imprint molds obtained in Example 1 and the comparative example were observed using a scanning electron microscope. The result is shown in FIG. 4A is a photograph showing the surface of the imprint mold in Example 1, and FIG. 4B is a comparative example.
 実施例1においては、図4(a)より、ハードマスク層除去の際に酸化被膜が発生しておらず、均一にエッチングが行われていることがわかった。
 その一方、比較例においては、図4(b)より、基板上に無数の酸化被膜が発生しており、均一にエッチングが行われていないことがわかった。
In Example 1, it was found from FIG. 4A that no oxide film was generated during the removal of the hard mask layer, and etching was performed uniformly.
On the other hand, in the comparative example, it was found from FIG. 4B that an infinite number of oxide films were generated on the substrate and etching was not performed uniformly.
1    基板
2    導電層
3    酸化防止層
4    微細パターン形成用レジスト層
10   残存ハードマスク層除去前モールド
20   インプリント用モールド
6    台座構造用レジスト層
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Conductive layer 3 Antioxidation layer 4 Resist layer 10 for fine pattern formation Mold before residual hard mask layer removal 20 Imprint mold 6 Resist layer for base structure

Claims (8)

  1.  Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を含むハードマスク層が基板上に形成され、さらに前記ハードマスク層上にパターン形成用レジスト層が形成されたマスクブランクスからハードマスク層を除去する工程において、還元性ガスが導入されたドライエッチングにより前記ハードマスク層を除去することを特徴とするインプリント用モールドの製造方法。
     ただし、前記ドライエッチングは、エッチング装置内の酸素含有量が5%以下となる程度に酸素を含まないエッチングガスを用いた処理である。
    A hard mask layer including a conductive layer made of a compound containing Ta as a main component or at least one element of Hf and Zr or a material containing the compound is formed on a substrate, and a resist layer for pattern formation is formed on the hard mask layer A method for producing an imprint mold, comprising: removing the hard mask layer by dry etching into which a reducing gas has been introduced in the step of removing the hard mask layer from the mask blanks on which is formed.
    However, the dry etching is a process using an etching gas not containing oxygen to an extent that the oxygen content in the etching apparatus is 5% or less.
  2.  前記基板は透光性石英基板であり、
     前記導電層はTaおよびHfからなり、
     前記還元性ガスはBClを含むことを特徴とする請求項1に記載のインプリント用モールドの製造方法。
    The substrate is a translucent quartz substrate;
    The conductive layer is made of Ta and Hf,
    The method for producing an imprint mold according to claim 1, wherein the reducing gas contains BCl 3 .
  3.  基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有するハードマスク層を形成し、前記ハードマスク層上にパターン形成用レジスト層を形成する工程と、
     前記基板に溝を形成するためのパターンが描画された前記レジスト層を現像した後、溝形成部分のレジスト層およびハードマスク層を還元性ガスが導入された第1のドライエッチングで除去する工程と、
     除去された導電層の部分の透光性基板に対して第2のドライエッチングを行った後、溝形成部分以外の部分のレジスト層を除去する工程と、
     還元性ガスが導入された第3のドライエッチングにより、前記溝形成部分以外の部分の導電層を除去する残存ハードマスク層除去工程と、を有することを特徴とするインプリント用モールドの製造方法。
     ただし、前記ドライエッチングは、エッチング装置内の酸素含有量が5%以下となる程度に酸素を含まないエッチングガスを用いた処理である。
    A hard mask layer having a conductive layer made of a compound containing Ta as a main component or at least one element of Hf and Zr or a material containing the compound is formed on a substrate, and a resist layer for pattern formation is formed on the hard mask layer Forming a step;
    Developing the resist layer on which a pattern for forming a groove on the substrate is drawn, and then removing the resist layer and the hard mask layer in the groove forming portion by a first dry etching into which a reducing gas is introduced; ,
    A step of removing the resist layer in a portion other than the groove forming portion after performing the second dry etching on the translucent substrate of the removed conductive layer portion;
    And a remaining hard mask layer removing step of removing a conductive layer in a portion other than the groove forming portion by a third dry etching into which a reducing gas is introduced.
    However, the dry etching is a process using an etching gas not containing oxygen to an extent that the oxygen content in the etching apparatus is 5% or less.
  4.  前記基板は透光性石英基板であり、
     前記導電層はTaおよびHfからなり、
     前記第1および第3のドライエッチングにおいて、BClを含む還元性ガスおよび塩素ガスを用い、
     前記第2のドライエッチングにおいて、フッ素系ガス、またはフッ素系ガスに希ガスを加えたものを用いたことを特徴とする請求項3に記載のインプリント用モールドの製造方法。 
    The substrate is a translucent quartz substrate;
    The conductive layer is made of Ta and Hf,
    In the first and third dry etching, a reducing gas containing BCl 3 and a chlorine gas are used,
    4. The method for producing an imprint mold according to claim 3, wherein the second dry etching uses a fluorine-based gas or a fluorine-based gas added with a rare gas.
  5.  前記導電層の上部に、窒化クロムからなる酸化防止層が設けられたことを特徴とする請求項1ないし4のいずれかに記載のインプリント用モールドの製造方法。 The method for producing an imprint mold according to any one of claims 1 to 4, wherein an antioxidant layer made of chromium nitride is provided on the conductive layer.
  6.  基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層と、前記導電層の上部に設けられた導電層用の酸化防止層と、を有するハードマスク層を形成し、前記ハードマスク層上にパターン形成用レジスト層を形成する工程と、
     前記基板に溝を形成するためのパターンが描画された前記レジスト層を現像した後、溝を形成する部分のレジスト層およびハードマスク層を還元性ガスが導入された第1のドライエッチングで除去する工程と、
     前記基板における溝を形成する部分に対して第2のドライエッチングを行った後、溝形成部分以外の部分のレジスト層を除去する工程と、
    を有することを特徴とする残存ハードマスク層除去前モールドの製造方法。
     ただし、前記ドライエッチングは、エッチング装置内の酸素含有量が5%以下となる程度に酸素を含まないエッチングガスを用いた処理である。
    On the substrate, a conductive layer made of a compound containing Ta as a main component or at least one element of Hf and Zr or a material containing the compound, an anti-oxidation layer for the conductive layer provided on the conductive layer, Forming a hard mask layer having a pattern forming resist layer on the hard mask layer; and
    After developing the resist layer on which a pattern for forming a groove is drawn on the substrate, the resist layer and the hard mask layer where the groove is to be formed are removed by first dry etching in which a reducing gas is introduced. Process,
    Performing a second dry etching on the portion of the substrate where the groove is to be formed, and then removing the resist layer in a portion other than the groove forming portion;
    A method for producing a mold before removing a remaining hard mask layer, comprising:
    However, the dry etching is a process using an etching gas not containing oxygen to an extent that the oxygen content in the etching apparatus is 5% or less.
  7.  溝により形成されるパターンを有する基板上の少なくとも一部に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有しかつ前記導電層用の酸化防止層を有さないハードマスク層が形成されたことを特徴とする残存ハードマスク層除去前モールド。 A conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound is provided on at least a part of a substrate having a pattern formed by grooves, and for the conductive layer A mold before removing the remaining hard mask layer, characterized in that a hard mask layer having no anti-oxidation layer is formed.
  8.  基板上に、Taを主成分とする化合物またはHfとZrの少なくとも一方の元素もしくはその化合物を含む材料からなる導電層を有しかつ前記導電層用の酸化防止層を有さないハードマスク層が形成され、前記ハードマスク層上にパターン形成用レジスト層が形成されたことを特徴とするマスクブランクス。 A hard mask layer having a conductive layer made of a compound containing Ta as a main component, at least one element of Hf and Zr, or a material containing the compound and not having an antioxidant layer for the conductive layer on a substrate. A mask blank formed by forming a resist layer for pattern formation on the hard mask layer.
PCT/JP2010/066966 2009-09-30 2010-09-29 Method for manufacturing mold for imprint, mold with unremoved remaining hard mask layer, method for manufacturing mold with unremoved remaining hard mask layer, and mask blank WO2011040477A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009227659 2009-09-30
JP2009-227659 2009-09-30
JP2009-243066 2009-10-22
JP2009243066A JP2011096686A (en) 2009-09-30 2009-10-22 Method for manufacturing mold for imprinting, mold with unremoved remaining hard mask layer and method for manufacturing the same, and mask blank

Publications (1)

Publication Number Publication Date
WO2011040477A1 true WO2011040477A1 (en) 2011-04-07

Family

ID=43826291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066966 WO2011040477A1 (en) 2009-09-30 2010-09-29 Method for manufacturing mold for imprint, mold with unremoved remaining hard mask layer, method for manufacturing mold with unremoved remaining hard mask layer, and mask blank

Country Status (2)

Country Link
JP (1) JP2011096686A (en)
WO (1) WO2011040477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710849B (en) * 2015-11-18 2020-11-21 日商Hoya股份有限公司 Mask blank with a resist layer, method of manufacturing a mask blank with a resist layer, and method of manufacturing a transfer mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013047195A1 (en) * 2011-09-30 2015-03-26 Hoya株式会社 Mold blank, master mold, copy mold, and mold blank manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121582A (en) * 1999-10-26 2001-05-08 Ntt Advanced Technology Corp Mold and manufacturing method
JP2003248292A (en) * 2002-02-22 2003-09-05 Hoya Corp Phase shift mask blank and method of manufacturing the same, and laminate
JP2007144995A (en) * 2005-10-25 2007-06-14 Dainippon Printing Co Ltd Mold for photo-curable nano-imprinting and its manufacturing method
JP2008209873A (en) * 2007-02-28 2008-09-11 Hoya Corp Mask blank and method for manufacturing exposure mask, and method for manufacturing template for imprinting
WO2009041551A1 (en) * 2007-09-27 2009-04-02 Hoya Corporation Mask blank, and method for production of imprint mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001121582A (en) * 1999-10-26 2001-05-08 Ntt Advanced Technology Corp Mold and manufacturing method
JP2003248292A (en) * 2002-02-22 2003-09-05 Hoya Corp Phase shift mask blank and method of manufacturing the same, and laminate
JP2007144995A (en) * 2005-10-25 2007-06-14 Dainippon Printing Co Ltd Mold for photo-curable nano-imprinting and its manufacturing method
JP2008209873A (en) * 2007-02-28 2008-09-11 Hoya Corp Mask blank and method for manufacturing exposure mask, and method for manufacturing template for imprinting
WO2009041551A1 (en) * 2007-09-27 2009-04-02 Hoya Corporation Mask blank, and method for production of imprint mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI710849B (en) * 2015-11-18 2020-11-21 日商Hoya股份有限公司 Mask blank with a resist layer, method of manufacturing a mask blank with a resist layer, and method of manufacturing a transfer mask

Also Published As

Publication number Publication date
JP2011096686A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5161017B2 (en) Mask blank, mask blank manufacturing method, and imprint mold manufacturing method
WO2013047195A1 (en) Mold blank, master mold, copy mold, and method for manufacturing mold blank
JP2008090881A (en) Manufacturing method of magnetic recording medium
WO2012137324A1 (en) Mask blanks for mold fabrication and mold fabrication method
JP2011211083A (en) Mask blanks, pattern forming method, and manufacturing method of mold
JP5651616B2 (en) Magnetic recording medium and manufacturing method thereof
JP5599213B2 (en) Mold manufacturing method
WO2011040477A1 (en) Method for manufacturing mold for imprint, mold with unremoved remaining hard mask layer, method for manufacturing mold with unremoved remaining hard mask layer, and mask blank
JP5453616B2 (en) Method for producing imprint mold
JP5627990B2 (en) Method for producing imprint mold
JP5853071B2 (en) Mask blanks for mold production and mask blanks with resist for mold production
WO2011040476A1 (en) Process for producing imprinting mold
JP5743920B2 (en) Method for producing glass structure having fine pattern
JP5606826B2 (en) Release layer for imprint, mold with release layer for imprint, and method for producing mold with release layer for imprint
JP5626613B2 (en) Mask blank for imprint mold
JP5798349B2 (en) Mold with release layer, method for producing the same, and method for producing the mold
JP6123304B2 (en) Template laminated substrate, template blank, nanoimprint template, template substrate regeneration method, and template laminate substrate manufacturing method
JP2011073304A (en) Method for manufacturing mold for imprint
JP2011156738A (en) Method of manufacturing sub master mold
JP2011209628A (en) Mask blank and method for manufacturing mold
JP5272936B2 (en) Method for producing patterned media type magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820592

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820592

Country of ref document: EP

Kind code of ref document: A1