WO2018100535A1 - Combination therapy - Google Patents
Combination therapy Download PDFInfo
- Publication number
- WO2018100535A1 WO2018100535A1 PCT/IB2017/057549 IB2017057549W WO2018100535A1 WO 2018100535 A1 WO2018100535 A1 WO 2018100535A1 IB 2017057549 W IB2017057549 W IB 2017057549W WO 2018100535 A1 WO2018100535 A1 WO 2018100535A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- antibody
- optionally substituted
- set forth
- prmt5
- Prior art date
Links
- 0 CC(C(C*(C)CC*)=CC)NC Chemical compound CC(C(C*(C)CC*)=CC)NC 0.000 description 2
- XRHUHSAZYXXLGU-VOTSOKGWSA-N CC(/C(/C=C)=N/C)=O Chemical compound CC(/C(/C=C)=N/C)=O XRHUHSAZYXXLGU-VOTSOKGWSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39541—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against normal tissues, cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/75—Agonist effect on antigen
Definitions
- the present invention relates to a method of treating cancer in a mammal and to combinations useful in such treatment.
- the present invention relates to combinations of Type II protein arginine methyltransferase (Type II PRMT) inhibitors and immuno-modulatory agents, such as anti-OX40 antibodies.
- Type II PRMT Type II protein arginine methyltransferase
- cancer results from the deregulation of the normal processes that control cell division, differentiation and apoptotic cell death and is characterized by the proliferation of malignant cells which have the potential for unlimited growth, local expansion and systemic metastasis.
- Deregulation of normal processes includes abnormalities in signal transduction pathways and response to factors that differ from those found in normal cells. Arginine methylation is an important post-translational modification on proteins involved in a diverse range of cellular processes such as gene regulation, RNA processing, DNA damage response, and signal transduction.
- Proteins containing methylated arginines are present in both nuclear and cytosolic fractions suggesting that the enzymes that catalyze the transfer of methyl groups on to arginines are also present throughout these subcellular compartments (reviewed in Yang, Y. & Bedford, M. T. Protein arginine methyltransferases and cancer. Nat Rev Cancer 13, 37-50, doi: 10.1038/nrc3409 (2013); Lee, Y. H. & Stallcup, M. R. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23, 425-433, doi: 10.1210/me.2008-0380 (2009)).
- methylated arginine exists in three major forms: co-A ⁇ -monomethyl- arginine (MMA), dimethyl arginine (ADMA), or ⁇ - ⁇ °, ⁇ ' ⁇ - symmetric dimethyl arginine (SDMA).
- MMA co-A ⁇ -monomethyl- arginine
- ADMA dimethyl arginine
- SDMA ⁇ - ⁇ °, ⁇ ' ⁇ - symmetric dimethyl arginine
- Arginine methylation occurs largely in the context of glycine-, arginine-rich (GAR) motifs through the activity of a family of Protein Arginine Methyltransferases (PRMTs) that transfer the methyl group from S-adenosyl-L-methionine (SAM) to the substrate arginine side chain producing S-adenosyl-homocysteine (SAH) and methylated arginine.
- PRMTs Protein Arginine Methyltransferases
- SAM S-adenosyl-L-methionine
- SAH S-adenosyl-homocysteine
- This family of proteins is comprised of 10 members of which 9 have been shown to have enzymatic activity (Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why.
- the PRMT family is categorized into four sub-types (Type I-IV) depending on the product of the enzymatic reaction.
- Type IV enzymes methylate the internal guanidino nitrogen and have only been described in yeast (Fisk, J. C. & Read, L. K. Protein arginine methylation in parasitic protozoa. Eukaryot Cell 10, 1013-1022, doi: 10.1128/EC.05103-11 (2011)); types I-III enzymes generate monomethyl-arginine (MMA, Rme l) through a single methylation event.
- the MMA intermediate is considered a relatively low abundance intermediate, however, select substrates of the primarily Type III activity of PRMT7 can remain monomethylated, while Types I and II enzymes catalyze progression from MMA to either asymmetric dimethyl-arginine (ADMA, Rme2a) or symmetric dimethyl arginine (SDMA, Rme2s) respectively.
- Type II PRMTs include PRMT5, and PRMT9, however, PRMT5 is the primary enzyme responsible for formation of symmetric dimethylation.
- Type I enzymes include PRMT1, PRMT3, PRMT4, PRMT6 and PRMT8.
- PRMT1, PRMT3, PRMT4, and PRMT6 are ubiquitously expressed while PRMT8 is largely restricted to the brain (reviewed in Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33, 1-13,
- PRMT5 functions in several types of complexes in the cytoplasm and the nucleus and binding partners of PRMT5 are required for substrate recognition and selectivity.
- Methylosome protein 50 (MEP50) is a known cofactor of PRMT5 that is required for PRMT5 binding and activity towards histones and other substrates (Ho MC, et al. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One. 2013;8(2)).
- PRMT5 symmetrically methylates arginines in multiple proteins, preferentially in regions rich in arginine and glycine residues (Karkhanis V, et al.
- PRMT5 methylates arginines in various cellular proteins including splicing factors, histones, transcription factors, kinases and others (Karkhanis V, et al. Versatility of PRMT5 -induced methylation in growth control and development. Trends Biochem Sci. 2011 Dec;36(12):633-41). Methylation of multiple components of the spliceosome is a key event in spliceosome assembly and the attenuation of PRMT5 activity through knockdown or gene knockout leads to disruption of cellular splicing (Bezzi M, et al.
- PRMT5 also methylates histone arginine residues (H3R8, H2AR3 and H4R3) and these histone marks are associated with transcriptional silencing of tumor suppressor genes, such as RB and ST7 (Wang L, Pal S, Sif S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol. 2008 Oct;28(20):6262-77).
- H2AR3 symmetric dimethylation of H2AR3 has been implicated in the silencing of differentiation genes in embryonic stem cells (Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P, Surani MA. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 2010 Dec 15;24(24):2772-7).
- PRMT5 also plays a role in cellular signaling, through the methylation of EGFR and PI3K (Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol.
- Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates Gl cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci. 2012 Sep; 103(9): 1640-50). Increasing evidence suggests that PRMT5 is involved in tumorigenesis.
- PRMT5 protein is overexpressed in a number of cancer types, including lymphoma, glioma, breast and lung cancer and PRMT5 overexpression alone is sufficient to transform normal fibroblasts (Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S. Low levels of miR- 92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 2007 Aug 8;26(15):3558-69; Wheat R, et al. Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Hum Pathol.
- PRMT5 methylates PDCD4 altering tumor-related functions.
- Co-expression of PRMT5 and PDCD4 in an orthotopic model of breast cancer promotes tumor growth.
- High expression of PRMT5 in glioma is associated with high tumor grade and overall poor survival and PRMT5 knockdown provides a survival benefit in an orthotopic glioblastoma model (Yan F, et al. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res. 2014 Mar 15;74(6): 1752-65).
- Increased PRMT5 expression and activity contribute to silencing of several tumor suppressor genes in glioma cell lines.
- MCL mantle cell lymphoma
- Cyclin Dl the oncogene that is translocated in the vast majority of MCL patients, associates with PRMT5 and through a cdk4-dependent mechanism increases PRMT5 activity (Aggarwal P, et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 2010 Oct 19; 18(4):329-40).
- PRMT5 mediates the suppression of key genes that negatively regulate DNA replication allowing for cyclin Dl -dependent neoplastic growth.
- PRMT5 knockdown inhibits cyclin Dl -dependent cell transformation causing death of tumor cells.
- PRMT5 has been postulated to play a role in differentiation, cell death, cell cycle progression, cell growth and proliferation. While the primary mechanism linking PRMT5 to tumorigenesis is unknown, emerging data suggest that PRMT5 contributes to regulation of gene expression (histone methylation, transcription factor binding, or promoter binding), alteration of splicing, and signal transduction. PRMT5 methylation of the transcription factor E2F 1 decreases its ability to suppress cell growth and promote apoptosis (Zheng S, et al. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell. 2013 Oct 10;52(1):37-51). PRMT5 also methylates p53 (Jansson M, et al.
- PRMT5 upregulates the p53 pathway through a splicing-related mechanism.
- PRMT5 knockout in mouse neural progenitor cells results in the alteration of cellular splicing including isoform switching of the MDM4 gene (Bezzi M, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 2013 Sep 1;27(17): 1903-16). Bezzi et al.
- PRMT5 knockout cells have decreased expression of a long MDM4 isoform (resulting in a functional p53 ubiquitin ligase) and increased expression of a short isoform of MDM4 (resulting in an inactive ligase). These changes in MDM4 splicing result in the inactivation of MDM4, increasing the stability of p53 protein, and subsequently, activation of the p53 pathway and cell death. MDM4 alternative splicing was also observed in PRMT5 knockdown cancer cell lines. These data suggest PRMT5 inhibition could activate multiple nodes of the p53 pathway.
- PRMT5 is also implicated in the epithelial-mesenchymal transition (EMT).
- EMT5 binds to the transcription factor SNAIL, and serves as a critical co-repressor of E-cadherin expression; knockdown of PRMT5 results in the upregulation of E-cadherin levels (Hou Z, et al.
- the LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL- dependent transcriptional repression. Mol Cell Biol. 2008 May;28(10):3198-207).
- Immunotherapies are another approach to treat hyperproliferative disorders. Enhancing anti-tumor T cell function and inducing T cell proliferation is a powerful and new approach for cancer treatment.
- Three immune-oncology antibodies e.g., immuno- modulators
- Anti-CTLA-4 YERVOY/ipilimumab
- Anti-PD-1 antibodies OPDIVO/nivolumab and KEYTRUDA/pembrolizumab
- FIG. 1 Four types of protein arginine methylation catalyzed by PRMTs.
- FIG. 2 Known PRMT5 substrates. PRMT5 symmetrically methylates arginines in multiple proteins, preferentially in regions rich in arginine and glycine residues (Karkhanis V, et al. Versatility of PRMT5 -induced methylation in growth control and development. Trends Biochem Sci. 2011 Dec;36(12):633-41). The vast majority of these substrates were identified through their ability to interact with PRMT5.
- FIG. 3 Molecular relationship between PRMT5/MEP50 complex activity and cyclin Dl oncogene driven pathways.
- MEP50 a PRMT5 coregulatory factor is a cdk4 substrate
- MEP50 phosphorylation increases PRMT5/MEP50 activity.
- Increased PRMT5 activity mediates key events associated with cyclin Dl -dependent neoplastic growth, including CUL4 (Cullin 4) repression, CDT1 overexpression, and DNA re -replication (adapted from Aggarwal P, et al. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase. Cancer Cell. 2010 Oct 19; 18(4):329-40).
- FIG. 4 Compound IC 50 values against PRMT5/MEP50.
- PRMT5/MEP50 (4 nM) activity was monitored using a radioactive assay under balanced conditions (substrate concentrations at Km apparent) measuring the transfer of 3 H from SAM to an H4 peptide following treatment with Compound C, Compound F, Compound B, or Compound E.
- IC50 values were determined by fitting the data to a 3-parameter dose-response equation.
- FIG. 5 The crystal structure resolved at 2.8A for PRMT5/MEP50 in complex with Compound C and sinefungin. The inset reveals that the compound is bound in the peptide binding pocket and makes key interactions with the PRMT5 backbone.
- FIG. 6 Phylogenetic tree highlighting the methyltransferases tested in the selectivity panel. Compound C showed much greater potency for PRMT5 ( ⁇ : , 10 "8 M) than for any other tested enzyme ( «, > 10 "5 M). PRMT9 is shown for relationship purposes only within the family tree and was not evaluated in the panel. Figure adapted from Richon VM. et al.
- FIG. 7 Compound C glCso values from a 6-day growth/death assay in a panel of cancer cell lines. DLBCL-diffuse large B-cell lymphoma, GBM-glioblastoma, MCL-mantle cell lymphoma, MM-multiple myeloma
- FIG. 8 Compound C glCioo (black squares) and Ymin-TO (bars) values from a 6-day growth/death assay in a panel of cancer cell lines (top concentration used in this assay was 30 ⁇ ). DLBCL-diffuse large B-cell lymphoma, GBM-glioblastoma, MCL-mantle cell lymphoma, MM-multiple myeloma
- ALL-acute lymphoblastic leukemia AML-acute myeloid leukemia, CML-chronic myeloid leukemia, DLBCL-diffuse large B-cell lymphoma, HL-Hodgkin lymphoma, HN- head and neck cancer, MM-multiple myeloma, NHL-non-Hodgkin lymphoma, NSCLC-non- small cell lung cancer, PEL-primary effusion lymphoma, SCLC-small cell lung cancer, TCL-T-cell lymphoma.
- FIG. 10 Compound E relative ICso values from 8-13 day colony formation assay performed in patient-derived and cell line tumor models.
- FIG. 11 Compound C inhibition of SDMA.
- A A representative SDMA dose-response curve (total SDMA normalized to GAPDH) on day 3 (top) and ICso values from Z 138 cells on days 1 and 3 (bottom).
- B SDMA ICso values in a panel of MCL lines (day 4).
- FIG. 12 Gene expression changes in lymphoma cell lines treated with a PRMT5 inhibitor.
- A Quantification of differentially expressed (DE) genes in lymphoma cell lines after Compound B (0.1 and 0.5 ⁇ ) treatment (days 2 and 4).
- B Overlap of DE genes across lymphoma lines.
- FIG. 13 Compound C gene expression ECso values in a panel of 11 genes identified by RNA-sequencing. Representative dose-response curves for CDKN1A (days 2 and 4, left panel) and gene panel ECso summary table (right panel, day 4).
- FIG. 14 Compound B attenuates the splicing of a subset of introns in lymphoma cell lines. A. Mechanisms of regulation of cellular splicing (adapted from Bezzi M. et al.). B. Analysis of intron expression in lymphoma lines treated with 0.1 or 0.5 ⁇ Compound B.
- FIG. 15 Compound B induces isoform switching for a subset of genes in lymphoma cell lines.
- FIG. 16 MDM4 alternative splicing and p53 activation in MCL lines treated with Compound C.
- FIG. 17 Compound C induces dose-dependent changes in MDM4 RNA (A) splicing and SDMA/p53/p21 levels in Z138 cells (B).
- FIG. 18 Activity of PRMT5 inhibitor and ibrutinib as single agents and in combination in MCL cell lines.
- Compound B and ibrutinib in RECl cells (day 6, 1 : 1 ratio).
- FIG. 19 Compound C efficacy and PD in a Z138 xenograft model.
- A. Compound C 21- day efficacy study in Z138 xenograft models.
- B. Quantified SDMA western data from tumors harvested at the end of the efficacy study (3 hours post last dose).
- FIG. 20 Compound C efficacy and PD in a Maver-1 xenograft model.
- A. Compound C 21 -day efficacy study in Maver-1 xenograft models.
- B. Quantified SDMA western data from tumors harvested at the end of the efficacy study (3 hours post last dose).
- FIG. 21 Compound B growth ICso values in a panel of breast cancer cell lines from a 7-day growth 2D assay (TNBC-triple negative breast cancer, HER2-Her2 positive, HR- hormone receptor positive).
- FIG. 22 Ymin-T0 values from 10-12 day growth/death assay in breast and MCL cell lines using the PRMT5 candidate, Compound C, and the PRMT5 tool molecule, Compound B.
- FIG. 24 Time course of SDMA inhibition following 1 ⁇ Compound B treatment in a panel of breast cancer cell lines. Cells were treated with DMSO or 1 ⁇ Compound B for the indicated periods of time and cellular lysates were analyzed by western blot with SDMA and actin antibodies. The last lane on each blot is 1 ⁇ 2 of DMSO control.
- FIG. 25 Compound C efficacy (left) and PK/PD (right) in a MDA-MB-468 xenograft model.
- FIG. 26 14 day growth/death CTG assay in GBM cell lines using the PRMT5 candidate, Compound C, and a PRMT5 tool molecule Compound B (Ymin - TO).
- FIG. 27 Compound B (1 ⁇ ) decreases SDMA levels (B), induces alternative splicing of MDM4 (A), and activates p53 (B) in GBM and lymphoma cell lines.
- FIG. 28 Combination with immunotherapy. Average survival for single agent and combination in the A20 tumor model.
- FIG. 29 Combination with immunotherapy. Average survival for single agent and combination in the CT26 tumor model.
- FIG. 30 Alignment of the amino acid sequences of 106-222, humanized 106-222 (Hul06), and human acceptor X61012 (GenBank accession number) VH sequences.
- FIG. 31 Alignment of the amino acid sequences of 106-222, humanized 106-222 (Hul06), and human acceptor AJ388641 (GenBank accession number) VL sequences.
- FIG. 32 Nucleotide sequence of the Hul06 VH gene flanked by Spel and Hindlll sites with the deduced amino acid sequence.
- FIG. 33 Nucleotide sequence of the Hul06-222 VL gene flanked by Nhel and EcoRI sites with the deduced amino acid sequence.
- FIG. 34 Alignement of the amino acid sequences of 119-122, humanized 119-122 (Hull9), and human acceptor Z14189 (GenBank accession number) VH sequences.
- FIG. 35 Alignment of the amino acid sequences of 119-122, humanized 119-122
- FIG. 36 Nucleotide sequence of the Hull9 VH gene flanked by Spel and Hindlll sites with the deduced amino acid sequence.
- FIG. 37 Nucleotide sequence of the Hull9 VL gene flanked by Nhel and EcoRI sites with the deduced amino acid sequence.
- FIG. 38 Nucleotide sequence of mouse 119-43-1 VH cDNA with the deduced amino acid sequence.
- FIG. 39 Nucleotide sequence of mouse 119-43-1 VL cDNA and the deduced amino acid sequence.
- FIG. 40 Nucleotide sequence of the designed 119-43-1 VH gene flanked by Spel and Hindlll sites with the deduced amino acid sequence.
- FIG. 41 Nucleotide sequence of the designed 119-43-1 VL gene flanked by Nhel and EcoRI sites with the deduced amino acid sequence.
- the present invention provides a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- Type II PRMT Type II protein arginine methyltransferase
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent, together with at least one of: a pharmaceutically acceptable carrier and a pharmaceutically acceptable diluent, thereby treating the cancer in the human, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- Type II PRMT Type II protein arginine methyltransferase
- the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine
- methyltransferase (Type II PRMT) inhibitor and a second pharmaceutical composition comprising a therapeutically effective amount of an immuno-modulatory agent, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a therapeutically effective amount of a pharmaceutical composition comprising a Type I protein arginine
- Type II PRMT methyltransferase (Type II PRMT) inhibitor and a pharmaceutical composition comprising an immuno-modulatory agent, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof, thereby treating the cancer in the human.
- the present invention provides use of a combination of aType II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for the manufacture of a medicament, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the present invention provides use of a combination of aType II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for the treatment of cancer, wherein the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- Type II protein arginine methyltransferase inhibitor or “Type II PRMT inhibitor” means an agent that inhibits protein arginine methyltransferase 5 (PRMT5) and/or protein arginine methyltransferase 9 (PRMT9).
- the Type II PRMT inhibitor is a small molecule compound.
- the Type II PRMT inhibitor selectively inhibits protein arginine methyltransferase 5 (PRMT5) and/or protein arginine methyltransferase 9 (PRMT9).
- the Type II PRMT inhibitor is an inhibitor of PRMT5.
- the Type II PRMT inhibitor is a selective inhibitor of PRMT5.
- Arginine methyltransferases are attractive targets for modulation given their role in the regulation of diverse biological processes. It has now been found that compounds described herein, and pharmaceutically acceptable salts and compositions thereof, are effective as inhibitors of arginine methyltransferases. Definitions of specific functional groups and chemical terms are described in more detail below. The chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75 th Ed., inside cover, and specific functional groups are generally defined as described therein.
- the compounds described herein can be in the form of an individual enantiomer, diastereomer or geometric isomer, or can be in the form of a mixture of stereoisomers, including racemic mixtures and mixtures enriched in one or more stereoisomer.
- Isomers can be isolated from mixtures by methods known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts; or preferred isomers can be prepared by asymmetric syntheses.
- structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, replacement of 19 F with 18 F, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of the disclosure.
- Such compounds are useful, for example, as analytical tools or probes in biological assays.
- aliphatic includes both saturated and unsaturated, nonaromatic, straight chain (i.e., unbranched), branched, acyclic, and cyclic (i.e., carbocyclic) hydrocarbons.
- an aliphatic group is optionally substituted with one or more functional groups.
- aliphatic is intended herein to include alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl moieties.
- Ci-6 alkyl is intended to encompass, Ci ; Ci, C3, C4, C5, C6, Ci-6, Ci-5, Ci-4, Ci-3, Ci-2, C2-6, C2-5, C2-4, C2-3, C3-6, C3-5, C3-4, C4-6, C4-5, and C5-6 alkyl.
- Radical refers to a point of attachment on a particular group. Radical includes divalent radicals of a particular group.
- Alkyl refers to a radical of a straight-chain or branched saturated hydrocarbon group having from 1 to 20 carbon atoms (“Ci-20 alkyl”). In some embodiments, an alkyl group has 1 to 10 carbon atoms (“Ci-10 alkyl”). In some embodiments, an alkyl group has 1 to 9 carbon atoms (“C1-9 alkyl”). In some embodiments, an alkyl group has 1 to 8 carbon atoms (“Ci-8 alkyl”). In some embodiments, an alkyl group has 1 to 7 carbon atoms (“C1-7 alkyl”).
- an alkyl group has 1 to 6 carbon atoms ("Ci-6 alkyl”). In some embodiments, an alkyl group has 1 to 5 carbon atoms ("C1-5 alkyl”). In some embodiments, an alkyl group has 1 to 4 carbon atoms ("Ci-4 alkyl”). In some embodiments, an alkyl group has 1 to 3 carbon atoms ("C1-3 alkyl”). In some embodiments, an alkyl group has 1 to 2 carbon atoms ("C1-2 alkyl”). In some embodiments, an alkyl group has 1 carbon atom (“Ci alkyl”). In some embodiments, an alkyl group has 2 to 6 carbon atoms ("C2-6 alkyl”).
- Ci-6 alkyl groups include methyl (Ci), ethyl (C2), n-propyl (C3), isopropyl (C3), n-butyl (C4), tert-butyl (C4), sec-butyl (C4), iso-butyl (C4), n-pentyl (C5), 3- pentanyl (C5), amyl (C5), neopentyl (C5), 3-methyl-2-butanyl (C5), tertiary amyl (C5), and n-hexyl (Ce).
- Additional examples of alkyl groups include n-heptyl (C7), n-octyl (Cs) and the like.
- each instance of an alkyl group is independently optionally substituted, e.g. , unsubstituted (an "unsubstituted alkyl") or substituted (a "substituted alkyl") with one or more substituents.
- the alkyl group is unsubstituted Ci-io alkyl (e.g., -CH3).
- the alkyl group is substituted Ci-10 alkyl.
- an alkyl group is substituted with one or more halogens.
- Perhaloalkyl is a substituted alkyl group as defined herein wherein all of the hydrogen atoms are independently replaced by a halogen, e.g., fluoro, bromo, chloro, or iodo.
- the alkyl moiety has 1 to 8 carbon atoms ("Ci-8 perhaloalkyl”).
- the alkyl moiety has 1 to 6 carbon atoms ("Ci-6 perhaloalkyl”).
- the alkyl moiety has 1 to 4 carbon atoms ("Ci-4 perhaloalkyl”).
- the alkyl moiety has 1 to 3 carbon atoms ("C1-3 perhaloalkyl”).
- the alkyl moiety has 1 to 2 carbon atoms ("C1-2 perhaloalkyl").
- all of the hydrogen atoms are replaced with fluoro.
- all of the hydrogen atoms are replaced with chloro.
- perhaloalkyl groups include - CF3, -CF2CF3, -CF2CF2CF3, -CCI3, -CFCI2, -CF2CI, and the like.
- alkenyl refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 20 carbon atoms and one or more carbon-carbon double bonds (e.g., 1, 2, 3, or 4 double bonds), and optionally one or more triple bonds (e.g., 1, 2, 3, or 4 triple bonds) ("C2-20 alkenyl"). In certain embodiments, alkenyl does not comprise triple bonds. In some embodiments, an alkenyl group has 2 to 10 carbon atoms (“C2-10 alkenyl”). In some embodiments, an alkenyl group has 2 to 9 carbon atoms (“C2-9 alkenyl”). In some embodiments, an alkenyl group has 2 to 8 carbon atoms (“C2-8 alkenyl”).
- an alkenyl group has 2 to 7 carbon atoms (“C2-7 alkenyl”) In some embodiments, an alkenyl group has 2 to 6 carbon atoms (“C2-6 alkenyl”). In some embodiments, an alkenyl group has 2 to 5 carbon atoms ("C2-5 alkenyl”). In some embodiments, an alkenyl group has 2 to 4 carbon atoms ("C2-4 alkenyl”). In some embodiments, an alkenyl group has 2 to 3 carbon atoms (“C2-3 alkenyl”). In some embodiments, an alkenyl group has 2 carbon atoms ("C2 alkenyl”).
- the one or more carbon-carbon double bonds can be internal (such as in 2-butenyl) or terminal (such as in 1- butenyl).
- C2-4 alkenyl groups include ethenyl (C2), 1-propenyl (C3), 2-propenyl (C3), 1-butenyl (C4), 2-butenyl (C4), butadienyl (C4), and the like.
- C2-6 alkenyl groups include the aforementioned C2-4 alkenyl groups as well as pentenyl (C5), pentadienyl (C5), hexenyl (Ce), and the like.
- alkenyl examples include heptenyl (C7), octenyl (Cs), octatrienyl (Cs), and the like.
- each instance of an alkenyl group is independently optionally substituted, e.g. , unsubstituted (an "unsubstituted alkenyl") or substituted (a "substituted alkenyl") with one or more substituents.
- the alkenyl group is unsubstituted C2-10 alkenyl.
- the alkenyl group is substituted C2-10 alkenyl.
- Alkynyl refers to a radical of a straight-chain or branched hydrocarbon group having from 2 to 20 carbon atoms and one or more carbon-carbon triple bonds (e.g., 1, 2, 3, or 4 triple bonds), and optionally one or more double bonds (e.g., 1, 2, 3, or 4 double bonds) ("C2-20 alkynyl"). In certain embodiments, alkynyl does not comprise double bonds. In some embodiments, an alkynyl group has 2 to 10 carbon atoms (“C2-10 alkynyl "). In some embodiments, an alkynyl group has 2 to 9 carbon atoms (“C2-9 alkynyl”) .
- an alkynyl group has 2 to 8 carbon atoms (“C2-8 alkynyl”) . In some embodiments, an alkynyl group has 2 to 7 carbon atoms ("C2-7 alkynyl”). In some embodiments, an alkynyl group has 2 to 6 carbon atoms ("C2-6 alkynyl”). In some embodiments, an alkynyl group has 2 to 5 carbon atoms ("C2-5 alkynyl”) . In some embodiments, an alkynyl group has 2 to 4 carbon atoms (“C2-4 alkynyl”) . In some embodiments, an alkynyl group has 2 to 3 carbon atoms (“C2-3 alkynyl”) .
- an alkynyl group has 2 carbon atoms ("C2 alkynyl").
- the one or more carbon carbon triple bonds can be internal (such as in 2-butynyl) or terminal (such as in 1-butynyl).
- Examples of C2-4 alkynyl groups include, without limitation, ethynyl (C2), 1-propynyl (C3), 2-propynyl (C3), 1-butynyl (C4), 2-butynyl (C4), and the like.
- Examples of C2-6 alkenyl groups include the aforementioned C2-4 alkynyl groups as well as pentynyl (C5), hexynyl (C6), and the like.
- alkynyl examples include heptynyl (C7), octynyl (Cs), and the like.
- each instance of an alkynyl group is independently optionally substituted, e.g., unsubstituted (an "unsubstituted alkynyl") or substituted (a "substituted alkynyl") with one or more substituents.
- the alkynyl group is unsubstituted C2-10 alkynyl.
- the alkynyl group is substituted C2-10 alkynyl.
- “Fused” or “ortho-fused” are used interchangeably herein, and refer to two rings that have two atoms and one bond in common, e.g.., napthalene "Bridged” refers to a ring system containing (1) a bridgehead atom or group of atoms which connect two or more non-adjacent positions of the same ring; or (2) a bridgehead atom or group of atoms which connect two or more positions of different rings of a ring system and does not thereby form an ortho-fused ring, e.g.,
- Spiro or “Spiro-fused” refers to a group of atoms which connect to the same atom of a carboc project or heterocyclic ring system (geminal attachment), thereby forming a ring,
- Carbocyclyl or “carbocyclic” refers to a radical of a non-aromatic cyclic hydrocarbon group having from 3 to 14 ring carbon atoms (“C3-14 carbocyclyl”) and zero heteroatoms in the non-aromatic ring system.
- a carbocyclyl group refers to a radical of a non-aromatic cyclic hydrocarbon group having from 3 to 10 ring carbon atoms (C3-10 carbocyclyl”) and zero heteroatoms in the non-aromatic ring system.
- a carbocyclyl group has 3 to 8 ring carbon atoms ("C3-8 carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms ("C3-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 3 to 6 ring carbon atoms ("C3-6 carbocyclyl”). In some embodiments, a carbocyclyl group has 5 to 10 ring carbon atoms ("C5-10 carbocyclyl”).
- Exemplary C3-6 carbocyclyl groups include, without limitation, cyclopropyl (C3), cyclopropenyl (C3), cyclobutyl (C4), cyclobutenyl (C4), cyclopentyl (C5), cyclopentenyl (C5), cyclohexyl (C6), cyclohexenyl (C6), cyclohexadienyl (C6), and the like.
- Exemplary C3-8 carbocyclyl groups include, without limitation, the aforementioned C3-6 carbocyclyl groups as well as cycloheptyl (C7), cycloheptenyl (C7), cycloheptadienyl (C7), cycloheptatrienyl (C7), cyclooctyl (Cs), cyclooctenyl (Cs), bicyclo[2.2.1]heptanyl (C7), bicyclo[2.2.2]octanyl (Cs), and the like.
- Exemplary C3-10 carbocyclyl groups include, without limitation, the aforementioned C3 8 carbocyclyl groups as well as cyclononyl (Cs>), cyclononenyl (Cs>), cyclodecyl (C10), cyclodecenyl (C10), octahydro-lH-indenyl (Cs>), decahydronaphthalenyl (C10), spiro[4.5]decanyl (C10), and the like.
- the carbocyclyl group is either monocyclic (“monocyclic carbocyclyl”) or is a fused, bridged or spiro-fused ring system such as a bicyclic system ("bicyclic carbocyclyl”) and can be saturated or can be partially unsaturated.
- Carbocyclyl also includes ring systems wherein the carbocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups wherein the point of attachment is on the carbocyclyl ring, and in such instances, the number of carbons continue to designate the number of carbons in the carbocyclic ring system.
- each instance of a carbocyclyl group is independently optionally substituted, e.g., unsubstituted (an "unsubstituted carbocyclyl") or substituted (a "substituted carbocyclyl") with one or more substituents.
- the carbocyclyl group is unsubstituted C3-10 carbocyclyl.
- the carbocyclyl group is a substituted C3-10 carbocyclyl.
- "carbocyclyl” is a monocyclic, saturated carbocyclyl group having from 3 to 14 ring carbon atoms (“C3-14 cycloalkyl").
- “carbocyclyl” is a monocyclic, saturated carbocyclyl group having from 3 to 10 ring carbon atoms ("C3-10 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 8 ring carbon atoms ("C3-8 cycloalkyl”). In some embodiments, a cycloalkyl group has 3 to 6 ring carbon atoms ("C3-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 6 ring carbon atoms (“C5-6 cycloalkyl”). In some embodiments, a cycloalkyl group has 5 to 10 ring carbon atoms ("C5-10 cycloalkyl”).
- C5-6 cycloalkyl groups include cyclopentyl (C5) and cyclohexyl (C5).
- C3-6 cycloalkyl groups include the aforementioned C5-6 cycloalkyl groups as well as cyclopropyl (C3) and cyclobutyl (C 4 ).
- Examples of C3-8 cycloalkyl groups include the aforementioned C3-6 cycloalkyl groups as well as cycloheptyl (C7) and cyclooctyl (Cs).
- each instance of a cycloalkyl group is independently unsubstituted (an "unsubstituted cycloalkyl") or substituted (a "substituted cycloalkyl") with one or more substituents.
- the cycloalkyl group is unsubstituted C3-10 cycloalkyl.
- the cycloalkyl group is substituted C3-10 cycloalkyl.
- Heterocyclyl refers to a radical of a 3- to 14-membered non- aromatic ring system having ring carbon atoms and 1 to 4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("3-14 membered heterocyclyl”).
- heterocyclyl or heterocyclic refers to a radical of a 3-10 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("3-10 membered heterocyclyl").
- heterocyclyl groups that contain one or more nitrogen atoms, the point of attachment can be a carbon or nitrogen atom, as valency permits.
- a heterocyclyl group can either be monocyclic ("monocyclic heterocyclyl") or a fused, bridged or spiro-fused ring system such as a bicyclic system ("bicyclic
- Heterocyclyl can be saturated or can be partially unsaturated.
- Heterocyclyl bicyclic ring systems can include one or more heteroatoms in one or both rings.
- Heterocyclyl also includes ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more carbocyclyl groups wherein the point of attachment is either on the carbocyclyl or heterocyclyl ring, or ring systems wherein the heterocyclyl ring, as defined above, is fused with one or more aryl or heteroaryl groups, wherein the point of attachment is on the heterocyclyl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heterocyclyl ring system.
- each instance of heterocyclyl is independently optionally substituted, e.g., unsubstituted (an "unsubstituted heterocyclyl") or substituted (a "substituted heterocyclyl") with one or more substituents.
- the heterocyclyl group is unsubstituted 3-10 membered heterocyclyl.
- the heterocyclyl group is substituted 3-10 membered heterocyclyl.
- a heterocyclyl group is a 5-10 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur (“5-10 membered heterocyclyl").
- a heterocyclyl group is a 5-8 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5-8 membered heterocyclyl").
- a heterocyclyl group is a 5-6 membered non-aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5-6 membered heterocyclyl").
- the 5-6 membered heterocyclyl has 1-3 ring heteroatoms independently selected from nitrogen, oxygen, and sulfur.
- the 5-6 membered heterocyclyl has 1-2 ring heteroatoms independently selected from nitrogen, oxygen, and sulfur. In some embodiments, the 5-6 membered heterocyclyl has one ring heteroatom selected from nitrogen, oxygen, and sulfur.
- Exemplary 3-membered heterocyclyl groups containing one heteroatom include, without limitation, azirdinyl, oxiranyl, and thiorenyl.
- Exemplary 4-membered heterocyclyl groups containing one heteroatom include, without limitation, azetidinyl, oxetanyl, and thietanyl.
- Exemplary 5 -membered heterocyclyl groups containing one heteroatom include, without limitation, tetrahydrofuranyl, dihydrofuranyl, tetrahydrothiophenyl,
- Exemplary 5- membered heterocyclyl groups containing two heteroatoms include, without limitation, dioxolanyl, oxasulfuranyl, disulfuranyl, and oxazolidin-2-one.
- Exemplary 5 -membered heterocyclyl groups containing three heteroatoms include, without limitation, triazolinyl, oxadiazolinyl, and thiadiazolinyl.
- Exemplary 6-membered heterocyclyl groups containing one heteroatom include, without limitation, piperidinyl, tetrahydropyranyl,
- Exemplary 6-membered heterocyclyl groups containing two heteroatoms include, without limitation, piperazinyl, morpholinyl, dithianyl, and dioxanyl.
- Exemplary 6- membered heterocyclyl groups containing three heteroatoms include, without limitation, triazinanyl.
- Exemplary 7-membered heterocyclyl groups containing one heteroatom include, without limitation, azepanyl, oxepanyl and thiepanyl.
- Exemplary 8- membered heterocyclyl groups containing one heteroatom include, without limitation, azocanyl, oxecanyl, and thiocanyl.
- Exemplary 5 -membered heterocyclyl groups fused to a Ce aryl ring include, without limitation, indolinyl, isoindolinyl, dihydrobenzofuranyl, dihydrobenzothienyl, benzoxazolinonyl, and the like.
- Exemplary 6-membered heterocyclyl groups fused to an aryl ring include, without limitation, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and the like.
- Aryl refers to a radical of a monocyclic or polycyclic (e.g., bicyclic or tricyclic) 4n+2 aromatic ring system (e.g., having 6, 10, or 14 ⁇ electrons shared in a cyclic array) having 6-14 ring carbon atoms and zero heteroatoms provided in the aromatic ring system ("C6-14 aryl").
- an aryl group has six ring carbon atoms ("C6 aryl”; e.g., phenyl).
- an aryl group has ten ring carbon atoms ("Cio aryl”; e.g., naphthyl such as 1-naphthyl and 2-naphthyl).
- an aryl group has fourteen ring carbon atoms ("Ci4 aryl”; e.g., anthracyl).
- Aryl also includes ring systems wherein the aryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring, and in such instances, the number of carbon atoms continue to designate the number of carbon atoms in the aryl ring system.
- each instance of an aryl group is independently optionally substituted, e.g.
- the aryl group is unsubstituted C6-14 aryl. In certain embodiments, the aryl group is substituted C6-14 aryl.
- Heteroaryl refers to a radical of a 5-14 membered monocyclic or polycyclic (e.g., bicyclic or tricyclic) 4n+2 aromatic ring system (e.g., having 6 or 10 ⁇ electrons shared in a cyclic array) having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5- 14 membered heteroaryl").
- heteroaryl refers to a radical of a 5- 10 membered monocyclic or bicyclic 4n+2 aromatic ring system having ring carbon atoms and 1 -4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen and sulfur ("5-10 membered heteroaryl").
- heteroaryl groups that contain one or more nitrogen atoms the point of attachment can be a carbon or nitrogen atom, as valency permits.
- Heteroaryl bicyclic ring systems can include one or more heteroatoms in one or both rings.
- Heteroaryl includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more carbocyclyl or heterocyclyl groups wherein the point of attachment is on the heteroaryl ring, and in such instances, the number of ring members continue to designate the number of ring members in the heteroaryl ring system.
- Heteroaryl also includes ring systems wherein the heteroaryl ring, as defined above, is fused with one or more aryl groups wherein the point of attachment is either on the aryl or heteroaryl ring, and in such instances, the number of ring members designates the number of ring members in the fused (aryl/heteroaryl) ring system.
- Bicyclic heteroaryl groups wherein one ring does not contain a heteroatom e.g., indolyl, quinolinyl, carbazolyl, and the like
- the point of attachment can be on either ring, e.g., either the ring bearing a heteroatom (e.g., 2-indolyl) or the ring that does not contain a heteroatom (e.g., 5-indolyl).
- a heteroaryl group is a 5-14 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5- 14 membered heteroaryl").
- a heteroaryl group is a 5-10 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5-10 membered heteroaryl").
- a heteroaryl group is a 5-8 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is
- a heteroaryl group is a 5-6 membered aromatic ring system having ring carbon atoms and 1-4 ring heteroatoms provided in the aromatic ring system, wherein each heteroatom is independently selected from nitrogen, oxygen, and sulfur ("5-6 membered heteroaryl").
- the 5-6 membered heteroaryl has 1-3 ring heteroatoms independently selected from nitrogen, oxygen, and sulfur.
- the 5-6 membered heteroaryl has 1-2 ring heteroatoms independently selected from nitrogen, oxygen, and sulfur.
- the 5-6 membered heteroaryl has 1 ring heteroatom selected from nitrogen, oxygen, and sulfur.
- each instance of a heteroaryl group is independently optionally substituted, e.g., unsubstituted ("unsubstituted heteroaryl") or substituted ("substituted heteroaryl") with one or more substituents.
- the heteroaryl group is unsubstituted 5-14 membered heteroaryl. In certain embodiments, the heteroaryl group is substituted 5-14 membered heteroaryl.
- Exemplary 5 -membered heteroaryl groups containing one heteroatom include, without limitation, pyrrolyl, furanyl and thiophenyl.
- Exemplary 5 -membered heteroaryl groups containing two heteroatoms include, without limitation, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, and isothiazolyl.
- Exemplary 5 -membered heteroaryl groups containing three heteroatoms include, without limitation, triazolyl, oxadiazolyl, and thiadiazolyl.
- Exemplary 5-membered heteroaryl groups containing four heteroatoms include, without limitation, tetrazolyl.
- Exemplary 6-membered heteroaryl groups containing one heteroatom include, without limitation, pyridinyl.
- Exemplary 6-membered heteroaryl groups containing two heteroatoms include, without limitation, pyridazinyl, pyrimidinyl, and pyrazinyl.
- Exemplary 6-membered heteroaryl groups containing three or four heteroatoms include, without limitation, triazinyl and tetrazinyl, respectively.
- Exemplary 7-membered heteroaryl groups containing one heteroatom include, without limitation, azepinyl, oxepinyl, and thiepinyl.
- Exemplary 6,6-bicyclic heteroaryl groups include, without limitation, naphthyridinyl, pteridinyl, quinolinyl, isoquinolinyl, cinnolinyl, quinoxalinyl, phthalazinyl, and quinazolinyl.
- Exemplary 5,6-bicyclic heteroaryl groups include, without limitation, any one of the following formulae:
- the point of attachment can be any carbon or nitrogen atom, as valency permits.
- Partially unsaturated refers to a group that includes at least one double or triple bond.
- the term “partially unsaturated” is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aromatic groups (e.g., aryl or heteroaryl groups) as herein defined.
- saturated refers to a group that does not contain a double or triple bond, i.e., contains all single bonds.
- aliphatic, alkyl, alkenyl, alkynyl, carbocyclyl, heterocyclyl, aryl, and heteroaryl groups, as defined herein, are optionally substituted (e.g., "substituted” or “unsubstituted” aliphatic, "substituted” or “unsubstituted” alkyl, "substituted” or
- unsubstituted aryl or substituted” or “unsubstituted” heteroaryl group means that at least one hydrogen present on a group (e.g., a carbon or nitrogen atom) is replaced with a permissible substituent, e.g., a substituent which upon substitution results in a stable compound, e.g., a compound which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, or other reaction.
- a “substituted” group has a substituent at one or more substitutable positions of the group, and when more than one position in any given structure is substituted, the substituent is either the same or different at each position.
- substituted is contemplated to include substitution with all permissible substituents of organic compounds, including any of the substituents described herein that results in the formation of a stable compound.
- the present disclosure contemplates any and all such combinations in order to arrive at a stable compound.
- heteroatoms such as nitrogen may have hydrogen substituents and/or any suitable substituent as described herein which satisfy the valencies of the heteroatoms and results in the formation of a stable moiety.
- alkyl) 2 alkyl
- alkyl alkyl
- - OC(NH)NH(Ci- 6 alkyl) -OC(NH)NH 2
- a “counterion” or “anionic counterion” is a negatively charged group associated with a cationic quaternary amino group in order to maintain electronic neutrality.
- Exemplary counterions include halide ions (e.g., F “ , CI “ , Br “ , I “ ), NO3 “ , CIO4 “ , OH “ , H 2 P04 “ , HSO4 “ , sulfonate ions (e.g., methansulfonate, trifluoromethanesulfonate, p- toluenesulfonate, benzenesulfonate, 10-camphor sulfonate, naphthalene-2-sulfonate, naphthalene-l-sulfonic acid-5 -sulfonate, ethan-l-sulfonic acid-2-sulfonate, and the like), and carboxylate ions (e.g., acetate, ethanoate, propanoate, benzoate, glycerate, lactate, tartrate, glycolate, and the like).
- carboxylate ions e.g.,
- Halo or “halogen” refers to fluorine (fluoro, -F), chlorine (chloro, -CI), bromine (bromo, -Br), or iodine (iodo, -I).
- Nitrogen atoms can be substituted or unsubstituted as valency permits, and include primary, secondary, tertiary, and quarternary nitrogen atoms.
- the substituent present on a nitrogen atom is a nitrogen protecting group (also referred to as an amino protecting group).
- Nitrogen protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, incorporated herein by reference.
- Amide nitrogen protecting groups include, but are not limited to, formamide, acetamide, chloroacetamide, trichloroacetamide, trifluoroacetamide, phenylacetamide, 3-phenylpropanamide, picolinamide, 3-pyridylcarboxamide, N- benzoylphenylalanyl derivative, benzamide, p-phenylbenzamide, o-nitophenylacetamide, o- nitrophenoxyacetamide, acetoacetamide, (N'-dithiobenzyloxyacylamino)acetamide, 3- ⁇ p- hydroxyphenyl)propanamide, 3-(o-nitrophenyl)propanamide, 2-methyl-2-(o- nitrophenoxy)propanamide, 2-methyl-2-(o-phenylazophenoxy)propanamide, 4- chlorobutanamide, 3-methyl-3-nitrobutanamide, o-nitrocinnamide
- Carbamate nitrogen protecting groups include, but are not limited to, methyl carbamate, ethyl carbamante, 9-fluorenylmethyl carbamate (Fmoc), 9-(2- sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-i- butyl-[9-( 10, 10-dioxo-10, 10,10,10-tetrahydrothioxanthyl)] methyl carbamate (DBD-
- Tmoc 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2- trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), l-(l-adamantyl)-l- methylethyl carbamate (Adpoc), 1,1 -dimethyl -2 -haloethyl carbamate, 1, 1 -dimethyl -2,2- dibromoethyl carbamate (DB-i-BOC), l,l-dimethyl-2,2,2-trichloroethyl carbamate
- TBOC 1 -methyl- l-(4-biphenylyl)ethyl carbamate (Bpoc), l-(3,5-di-i-butylphenyl)-l- methylethyl carbamate (7-Bumeoc), 2-(2'- and 4'-pyridyl)ethyl carbamate (Pyoc), 2- ⁇ N,N- dicyclohexylcarboxamido)ethyl carbamate, 7-butyl carbamate (BOC), 1-adamantyl carbamate (Adoc), vinyl carbamate (Voc), allyl carbamate (Alloc), 1-isopropylallyl carbamate (Ipaoc), cinnamyl carbamate (Coc), 4-nitrocinnamyl carbamate (Noc), 8- quinolyl carbamate, N-hydroxypiperidinyl carbamate, alkyldithio carbamate, benzyl carb
- Sulfonamide nitrogen protecting groups include, but are not limited to, p-toluenesulfonamide (Ts), benzenesulfonamide, 2,3,6,-trimethyl-4- methoxybenzene sulfonamide (Mtr), 2,4,6-trimethoxybenzenesulfonamide (Mtb), 2,6- dimethyl-4-methoxybenzenesulfonamide (Pme), 2,3,5, 6-tetramethyl-4- methoxybenzene sulfonamide (Mte), 4-methoxybenzenesulfonamide (Mbs), 2,4,6- trimethylbenzenesulfonamide (Mts), 2,6-dimethoxy-4-methylbenzenesulfonamide (iMds), 2,2,5,7, 8-pentamethylchroman-6-sulfonamide (Pmc), methane sulfonamide (Ms), p-toluenesulfonamide (Ts),
- nitrogen protecting groups include, but are not limited to, phenothiazinyl- (lO)-acyl derivative, N-/J>-toluenesulfonylaminoacyl derivative, N-phenylaminothioacyl derivative, N-benzoylphenylalanyl derivative, N-acetylmethionine derivative, 4,5-diphenyl- 3-oxazolin-2-one, N-phthalimide, N-dithiasuccinimide (Dts), N-2,3-diphenylmaleimide, N- 2,5-dimethylpyrrole, N-l, l,4,4-tetramethyldisilylazacyclopentane adduct (STABASE), 5- substituted l,3-dimethyl-l,3,5-triazacyclohexan-2-one, 5-substituted 1,3-dibenzyl- 1,3,5- triazacyclohexan-2-one, 1-substituted 3,5
- benzenesulfenamide o-nitrobenzenesulfenamide (Nps), 2,4-dinitrobenzenesulfenamide, pentachlorobenzenesulfenamide, 2-nitro-4-methoxybenzenesulfenamide,
- triphenylmethylsulfenamide triphenylmethylsulfenamide
- 3-nitropyridinesulfenamide Npys
- the substituent present on an oxygen atom is an oxygen protecting group (also referred to as a hydroxyl protecting group).
- oxygen protecting groups include, but are not limited to, methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), i-butylthiomethyl,
- DPMS diphenylmethylsilyl
- TMPS i-butylmethoxyphenylsilyl
- dimethylphosphinothioyl dimethylphosphinothioyl, alkyl 2,4-dinitrophenylsulfenate, sulfate, methane sulfonate (mesylate), benzylsulfonate, and tosylate (Ts).
- the substituent present on a sulfur atom is a sulfur protecting group (also referred to as a thiol protecting group).
- Sulfur protecting groups are well known in the art and include those described in detail in Protecting Groups in Organic Synthesis, T. W. Greene and P. G. M. Wuts, 3 rd edition, John Wiley & Sons, 1999, incorporated herein by reference.
- LG is a term understood in the art to refer to a molecular fragment that departs with a pair of electrons upon heterolytic bond cleavage, wherein the molecular fragment is an anion or neutral molecule. See, for example, Smith, March Advanced Organic Chemistry 6th ed. (501-502).
- Suitable leaving groups include, but are not limited to, halides (such as chloride, bromide, or iodide), alkoxycarbonyloxy, aryloxycarbonyloxy, alkanesulfonyloxy, arenesulfonyloxy, alkyl-carbonyloxy (e.g., acetoxy), arylcarbonyloxy, aryloxy, methoxy, ⁇ , ⁇ - dimethylhydroxylamino, pixyl, haloformates, -N02, trialkylammonium, and aryliodonium salts.
- the leaving group is a sulfonic acid ester.
- the sulfonic acid ester comprises the formula -OS0 2 R LG1 wherein R LG1 is selected from the group consisting alkyl optionally, alkenyl optionally substituted, heteroalkyl optionally substituted, aryl optionally substituted, heteroaryl optionally substituted, arylalkyl optionally substituted, and heterarylalkyl optionally substituted.
- R LG1 is substituted or unsubstituted C1-C6 alkyl.
- R LG1 is methyl.
- R LG1 is substituted or unsubstituted aryl.
- R LG1 is substituted or unsubstitued phenyl.
- R LG1 is:
- the leaving group is toluene sulfonate (tosylate, Ts),
- methane sulfonate (mesylate, Ms), p-bromobenzenesulfonyl (brosylate, Bs), or
- the leaving group is a brosylate (p-bromobenzenesulfonyl). In some cases, the leaving group is a nosylate (2- nitrobenzenesulfonyl). In some embodiments, the leaving group is a sulfonate-containing group. In some embodiments, the leaving group is a tosylate group.
- the leaving group may also be a phosphineoxide (e.g., formed during a Mitsunobu reaction) or an internal leaving group such as an epoxide or cyclic sulfate.
- “Pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other animals without undue toxicity, irritation, allergic response, and the like, and are commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable salts are well known in the art. For example, Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences (1977) 66: 1-19.
- Pharmaceutically acceptable salts of the compounds describe herein include those derived from suitable inorganic and organic acids and bases.
- Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods used in the art such as ion exchange.
- inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
- organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid, or malonic acid or by using other methods used in the art such as ion exchange.
- salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2 -hydroxy -ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2- naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, peroxine sodium
- Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (Ci-4alkyl)4 salts.
- Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
- Further pharmaceutically acceptable salts include, when appropriate, quaternary salts.
- the Type II PRMT inhibitor is a compound of Formula (III):
- R 1 is hydrogen, R z , or -C(0)R z , wherein R z is optionally substituted Ci-6 alkyl;
- L is -N(R)C(0)-, -C(0)N(R)-, -N(R)C(0)N(R)-,-N(R)C(0)0-, or -OC(0)N(R)-; each R is independently hydrogen or optionally substituted Ci-6 aliphatic;
- Ar is a monocyclic or bicyclic aromatic ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur, wherein Ar is substituted with 0, 1, 2, 3, 4, or 5
- each R y is independently selected from the group consisting of halo, -CN, -NO2, optionally substituted aliphatic, optionally substituted carbocyclyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted heteroaryl, -OR A , -N(R B )2,
- each R A is independently selected from the group consisting of hydrogen, optionally substituted aliphatic, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, and optionally substituted heteroaryl;
- each R B is independently selected from the group consisting of hydrogen, optionally substituted aliphatic, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, and optionally substituted heteroaryl, or two R B groups are taken
- R 5 , R 6 , R 7 , and R 8 are independently hydrogen, halo, or optionally substituted aliphatic;
- each R x is independently selected from the group consisting of halo, -CN, optionally substituted aliphatic, -OR, and -N(R")2;
- R is hydrogen or optionally substituted aliphatic
- each R" is independently hydrogen or optionally substituted aliphatic, or two R" are taken together with their intervening atoms to form a heterocyclic ring;
- n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, as valency permits.
- L is -C(0)N(R)-.
- R 1 is hydrogen.
- n is 0.
- the Type II PRMT inhibitor is a compound of Formula (IV):
- At least one R y is -NHR B .
- R B is optionally substituted cycloalkyl.
- the Type II PRMT inhibitor is a compound of Formula (VII):
- L is -C(0)N(R)-.
- R 1 is hydrogen.
- n is 0.
- the Type II PRMT inhibitor is a compound of Formula (VIII):
- L is -C(0)N(R)-.
- R 1 is hydrogen.
- n is 0.
- the Type II PRMT inhibitor is a compound of Formula (IX):
- R 1 is hydrogen. In one aspect, n is 0.
- the Type II PRMT inhibitor is Compound B:
- the Type II PRMT inhibitor is a compound of Formula (X):
- R y is -NHR B .
- R B is optionally substituted heterocyclyl.
- the Type II PRMT inhibitor is a compound of Formula (XI):
- R xc is independently hydrogen, optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl
- R ⁇ is optionally substituted alkyl, optionally substituted carbocyclyl, optionally substituted heterocyclyl, optionally substituted aryl, or optionally substituted heteroaryl.
- the Type II PRMT inhibitor is Compound C:
- Compound C or a pharmaceutically acceptable salt thereof.
- Compound C and methods of making Compound C are disclosed in PCT/US2013/077235, in at least page 141 (Compound 208) and page 291, paragraph [00464] to page 294, paragraph [00469] .
- the Type II PRMT inhibitor is Compound E:
- the Type II PRMT inhibitor is Compound F:
- Type II PRMT inhibitors are further disclosed in PCT/US2013/077235 and PCT/US2015/043679, which are incorporated herein by reference.
- Exemplary Type II PRMT inhibitors are disclosed in Table 1A, Table IB, Table 1C, Table ID, Table IE, Table IF, and Table 1G of PCT/US2013/077235, and methods of making the Type II PRMT inhibitors are described in at least page 239, paragraph [00359] to page 301, paragraph [00485] of PCT/US2013/077235.
- Other non-limiting examples of Type II PRMT inhibitors or PRMT5 inhibitors are disclosed in the following published patent applications
- the Type II PRMT inhibitor is a nucleic acid (e.g., a siRNA).
- siRNAs against PRMT5 are described for instance in Mol Cancer Res. 2009 Apr;7(4): 557-69, and Biochem J. 2012 Sep 1;446(2):235-41.
- Antigen Binding Protein means a protein that binds an antigen, including antibodies or engineered molecules that function in similar ways to antibodies.
- Such alternative antibody formats include triabody, tetrabody, miniantibody, and a minibody,
- alternative scaffolds in which the one or more CDRs of any molecules in accordance with the disclosure can be arranged onto a suitable non-immunoglobulin protein scaffold or skeleton, such as an affibody, a SpA scaffold, an LDL receptor class A domain, an avimer (see, e.g., U.S. Patent Application Publication Nos. 2005/0053973,
- an ABP also includes antigen binding fragments of such antibodies or other molecules.
- an ABP may comprise the VH regions of the invention formatted into a full length antibody, a (Fab')2 fragment, a Fab fragment, a bi-specific or biparatopic molecule or equivalent thereof (such as scFV, bi- tri- or tetra-bodies, Tandabs, etc.), when paired with an appropriate light chain.
- the ABP may comprise an antibody that is an IgGl, IgG2, IgG3, or IgG4; or IgM; IgA, IgE or IgD or a modified variant thereof.
- the constant domain of the antibody heavy chain may be selected accordingly.
- the light chain constant domain may be a kappa or lambda constant domain.
- the ABP may also be a chimeric antibody of the type described in WO86/01533, which comprises an antigen binding region and a non-immunoglobulin region.
- the terms "ABP,” “antigen binding protein,” and “binding protein” are used interchangeably herein.
- the protein Programmed Death 1 is an inhibitory member of the CD28 family of receptors, that also includes CD28, CTLA-4, ICOS and BTLA.
- PD-1 is expressed on activated B cells, T cells, and myeloid cells (Agata et al., supra; Okazaki et al. (2002) Curr. Opin. Immunol 14:391779-82; Bennett et al. (2003) J Immunol 170:711-8)
- the initial members of the family, CD28 and ICOS were discovered by functional effects on augmenting T cell proliferation following the addition of monoclonal antibodies (Hutloff et al. (1999) Nature 397:263-266; Hansen et al.
- PD-1 was discovered through screening for differential expression in apototic cells (Ishida et al. (1992) EMBO J 11 :3887-95)
- CTLA-4, and BTLA were discovered through screening for differential expression in cytotoxic T lymphocytes and TH1 cells, respectively.
- CD28, ICOS and CTLA-4 all have an unpaired cysteine residue allowing for homodimerization.
- PD-1 is suggested to exist as a monomer, lacking the unpaired cysteine residue characteristic in other CD28 family members.
- PD-1 antibodies and methods of using in treatment of disease are described in US Patent Nos.: US 7,595,048; US 8,168,179; US 8,728,474; US 7,722,868; US 8,008,449; US 7,488,802; US 7,521,051; US 8,088,905; US 8,168,757; US 8,354,509; and US Publication Nos.
- PD-1 antagonist means any chemical compound or biological molecule that blocks binding of PD-Ll expressed on a cancer cell to PD-1 expressed on an immune cell (T cell, B cell or NKT cell) and preferably also blocks binding of PD-L2 expressed on a cancer cell to the immune-cell expressed PD-1.
- Alternative names or synonyms for PD-1 and its ligands include: PDCD1, PD1, CD279 and SLEB2 for PD-1; PDCD 1L1, PDL1, B7H1, B7-4, CD274 and B7-H for PD-Ll; and PDCD1L2, PDL2, B7- DC, Btdc and CD273 for PD-L2.
- Human PD-1 amino acid sequences can be found in NCBI Locus No.: NP 005009.
- Human PD-Ll and PD-L2 amino acid sequences can be found in NCBI Locus No.: NP_054862 and NP_079515, respectively.
- PD-1 antagonists useful in the any of the aspects of the present invention include a monoclonal antibody (mAb), or antigen binding fragment thereof, which specifically binds to PD-1 or PD-Ll, and preferably specifically binds to human PD-1 or human PD-Ll .
- the mAb may be a human antibody, a humanized antibody or a chimeric antibody, and may include a human constant region.
- the human constant region is selected from the group consisting of IgGl, IgG2, IgG3 and IgG4 constant regions, and in preferred embodiments, the human constant region is an IgGl or IgG4 constant region.
- the antigen binding fragment is selected from the group consisting of Fab, Fab'-SH, F(ab')2, scFv and Fv fragments.
- Fab fragment-specific Fab
- Fab'-SH fragment-specific Fab
- F(ab')2 fragment-specific Fab
- scFv fragment-specific Fab
- Fv fragment-specific Fv fragment-specific Fv fragment-specific Fab fragment-specific Fab fragment-bind to human PD-1 are described in US Patent No. 8,552,154; US Patent No. 8,354,509; US Patent No. 8, 168,757; US Patent No. 8,008,449; US Patent No.
- immunoadhesin molecules that specifically bind to PD-1 are described in WO2010027827 and WO2011066342.
- AMP-224 also known as B7-DCIg
- B7-DCIg a PD-L2-FC fusion protein and binds to human PD-1.
- Nivolumab is a humanized monoclonal anti-PD-1 antibody commercially available as OPDIVO®. Nivolumab is indicated for the treatment of some unresectable or metastatic melanomas. Nivolumab binds to and blocks the activation of PD-1, an Ig superfamily transmembrane protein, by its ligands PD-L1 and PD-L2, resulting in the activation of T- cells and cell-mediated immune responses against tumor cells or pathogens.
- nivolumab Activated PD- 1 negatively regulates T-cell activation and effector function through the suppression of P13k/Akt pathway activation.
- Other names for nivolumab include: BMS-936558, MDX- 1106, and ONO-4538.
- the amino acid sequence for nivolumab and methods of using and making are disclosed in US Patent No. US 8,008,449.
- Pembrolizumab is a humanized monoclonal anti-PD-1 antibody commercially available as KEYTRUDA®. Pembrolizumab is indicated for the treatment of some unresectable or metastatic melanomas. The amino acid sequence of pembrolizumab and methods of using are disclosed in US Patent No. 8,168,757.
- PD-L1 is a B7 family member that is expressed on many cell types, including APCs and activated T cells (Yamazaki et al. (2002) J. Immunol. 169:5538). PD-L1 binds to both PD-1 and B7-1. Both binding of T-cell-expressed B7-1 by PD-L1 and binding of T-cell- expressed PD-Ll by B7-1 result in T cell inhibition (Butte et al. (2007) Immunity 27: 111). There is also evidence that, like other B7 family members, PD-Ll can also provide costimulatory signals to T cells (Subudhi et al. (2004) J. Clin. Invest. 113:694; Tamura et al.
- PD-Ll human PD-Ll cDNA is composed of the base sequence shown by EMBL/GenBank Acc. No. AF233516 and mouse PD-Ll cDNA is composed of the base sequence shown by NM. sub.—021893) that is a ligand of PD-1 is expressed in so- called antigen-presenting cells such as activated monocytes and dendritic cells (Journal of Experimental Medicine (2000), vol. 19, issue 7, p 1027-1034). These cells present interaction molecules that induce a variety of immuno-inductive signals to T lymphocytes, and PD-Ll is one of these molecules that induce the inhibitory signal by PD-1.
- PD-Ll ligand stimulation suppressed the activation (cellular proliferation and induction of various cytokine production) of PD-1 expressing T lymphocytes.
- PD-Ll expression has been confirmed in not only immunocompetent cells but also a certain kind of tumor cell lines (cell lines derived from monocytic leukemia, cell lines derived from mast cells, cell lines derived from hepatic carcinomas, cell lines derived from neuroblasts, and cell lines derived from breast carcinomas) (Nature Immunology (2001), vol. 2, issue 3, p. 261-267).
- Anti -PD-Ll antibodies and methods of making the same are known in the art. Such antibodies to PD-Ll may be polyclonal or monoclonal, and/or recombinant, and/or humanized. PD-Ll antibodies are in development as immuno-modulatory agents for the treatment of cancer.
- Exemplary PD-Ll antibodies are disclosed in US Patent No. 9,212,224; US Patent No. 8,779, 108; US Patent No 8,552, 154; US Patent No. 8,383,796; US Patent No.
- WO2013019906 Additional exemplary antibodies to PD-Ll (also referred to as CD274 or B7-H1) and methods for use are disclosed in US Patent No. 8,168,179; US Patent No. 7,943,743; US Patent No. 7,595,048; WO2014055897; WO2013019906; and
- WO2010077634 Specific anti-human PD-Ll monoclonal antibodies useful as a PD-1 antagonist in the treatment method, medicaments and uses of the present invention include MPDL3280A, BMS-936559, MEDI4736, MSB0010718C.
- Atezolizumab is a fully humanized monoclonal anti-PD-Ll antibody commercially available as TECENTRIQTM. Atezolizumab is indictated for the treatment of some locally advanced or metastatic urothelial carcinomas. Atezolizumab blocks the interaction of PD- Ll with PD-1 and CD 80.
- CD 134 also known as OX40, is a member of the TNFR-superfamily of receptors which is not constitutively expressed on resting naive T cells, unlike CD28.
- OX40 is a secondary costimulatory molecule, expressed after 24 to 72 hours following activation; its ligand, OX40L, is also not expressed on resting antigen presenting cells, but is following their activation. Expression of OX40 is dependent on full activation of the T cell;
- OX40/OX40- ligand (OX40 Receptor)/(OX40L) are a pair of costimulatory molecules critical for T cell proliferation, survival, cytokine production, and memory cell generation.
- OX40/OX40L may play a role in promoting CD8 T cell-mediated immune responses.
- OX40 signaling blocks the inhibitory function of CD4 + CD25 + naturally occurring regulatory T cells and the OX40/OX40L pair plays a critical role in the global regulation of peripheral immunity versus tolerance.
- OX-40 antibodies, OX-40 fusion proteins and methods of using them are disclosed in US Patent Nos: US 7,504, 101; US 7,758,852; US 7,858,765; US 7,550, 140; US 7,960,515; and US 9,006,399 and international publications: WO 2003082919; WO
- an antigen binding protein (ABP) of the invention or an anti-OX40 antigen binding protein is one that binds OX40, and in some embodiments, does one or more of the following: modulate signaling through OX40, modulates the function of OX40, agonize OX40 signaling, stimulate OX40 function, or co-stimulate OX40 signaling.
- Example 1 of U.S. Patent 9,006,399 discloses an OX40 binding assay. One of skill in the art would readily recognize a variety of other well known assays to establish such functions.
- the OX40 antigen binding protein is one disclosed in
- the antigen binding protein comprises the CDRs of an antibody disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011, or CDRs with 90% identity to the disclosed CDR sequences.
- the antigen binding protein comprises a VH, a VL, or both of an antibody disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011 , or a VH or a VL with 90% identity to the disclosed VH or VL sequences.
- the OX40 antigen binding protein is disclosed in another embodiment.
- the antigen binding protein comprises the CDRs of an antibody disclosed in WO2013/028231 (PCT/US2012/024570), international filing date 9 Feb. 2012, or CDRs with 90% identity to the disclosed CDR sequences.
- the antigen binding protein comprises a VH, a VL, or both of an antibody disclosed in
- WO2013/028231 PCT/US2012/024570
- international filing date 9 Feb. 2012 or a VH or a VL with 90% identity to the disclosed VH or VL sequences.
- the anti-OX40 ABP or antibody of the invention comprises one or more of the CDRs or VH or VL sequences, or sequences with 90% identity thereto, shown in FIGS. 30 to 41 herein.
- the anti-OX40 ABP or antibody of the present invention comprises any one or a combination of the following CDRs:
- CDRHl DYSMH (SEQ ID NO: 1)
- CDRH2 WINTETGEPTYADDFKG (SEQ ID NO: 2)
- CDRH3 PYYDYVSYYAMDY (SEQ ID NO:3)
- CDRL1 KASQDVSTAVA (SEQ ID NO:7)
- CDRL2 SASYLYT (SEQ ID NO:8)
- CDRL3 QQHYSTPRT (SEQ ID NO: 9)
- the anti-OX40 ABP or antibodies of the present invention comprise a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5.
- the OX40 binding proteins of the present invention may comprise a heavy chain variable region having about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO:5.
- VH Humanized Heavy Chain
- the OX40 ABP or antibody comprises CDRLl (SEQ ID NO:7), CDRL2 (SEQ ID NO:8), and CDRL3 (SEQ ID NO:9) in the light chain variable region having the amino acid sequence set forth in SEQ ID NO: 11.
- OX40 binding proteins of the present invention comprise the light chain variable region set forth in SEQ ID NO: 11.
- an OX40 binding protein of the present invention comprises the heavy chain variable region of SEQ ID NO: 5 and the light chain variable region of SEQ ID NO: 11.
- VL Humanized Light Chain
- the OX40 binding proteins of the present invention comprise a light chain variable region having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 11.
- the OX40 binding proteins of the present invention may comprise a light chain variable region having about 85%, 86%, 87 %, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 11.
- the anti-OX40 ABP or antibody of the present invention comprise any one or a combination of the following CDRs:
- CDRH 1 SHDMS (SEQ ID NO : 13)
- CDRH2 AINSDGGSTYYPDTMER (SEQ ID NO: 14)
- CDRH3 HYDDYYAWFAY (SEQ ID NO: 15)
- CDRLl RASKSVSTSGYSYMH (SEQ ID NO: 19)
- CDRL2 LASNLES (SEQ ID NO:20)
- CDRL3 QHSRELPLT (SEQ ID NO:21)
- the anti-OX40 ABP or antibodies of the present invention comprise a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 17.
- the OX40 binding proteins of the present invention may comprise a heavy chain variable region having about 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 17.
- VH Humanized Heavy Chain
- the OX40 ABP or antibody comprises CDRLl (SEQ ID NO: 19), CDRL2 (SEQ ID NO:20), and CDRL3 (SEQ ID NO:21) in the light chain variable region having the amino acid sequence set forth in SEQ ID NO: 23.
- OX40 binding proteins of the present invention comprise the light chain variable region set forth in SEQ ID NO:23.
- an OX40 binding protein of the present invention comprises the heavy chain variable region of SEQ ID NO: 17 and the light chain variable region of SEQ ID NO: 23.
- VL Humanized Light Chain
- the OX40 binding proteins of the present invention comprise a light chain variable region having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO:23.
- the OX40 binding proteins of the present invention may comprise a light chain variable region having about 85%, 86%, 87 %, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to SEQ ID NO: 23.
- CDRs or minimum binding units may be modified by at least one amino acid substitution, deletion or addition, wherein the variant antigen binding protein substantially retains the biological characteristics of the unmodified protein, such as an antibody comprising SEQ ID NO: 5 and SEQ ID NO: 11 or an antibody comprising SEQ ID NO: 17 and SEQ ID NO: 23.
- each of CDR HI, H2, H3, LI, L2, L3 may be modified alone or in combination with any other CDR, in any permutation or combination.
- a CDR is modified by the substitution, deletion or addition of up to 3 amino acids, for example 1 or 2 amino acids, for example 1 amino acid.
- the modification is a substitution, particularly a conservative substitution, for example as shown in Error! Reference source not found, below.
- the ABP or antibody of the invention comprises the CDRs of the 106-222 antibody, e.g. , of FIGS. 30-31 herein, e.g., CDRHl, CDRH2, and CDRH3 having the amino acid sequence as set forth in SEQ ID NOs 1, 2, and 3, as disclosed in FIG. 30, and e.g.,CDRLl, CDRL2, and CDRL3 having the sequences as set forth in SEQ ID NOs 7, 8, and 9 respectively.
- the ABP or antibody of the invention comprises the CDRs of the 106-222, Hul06 or Hu 106-222 antibody as disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011.
- the anti-OX40 ABP or antibody of the invention comprises the VH and VL regions of the 106-222 antibody as shown in FIGS. 30-31 herein, e.g., a VH having an amino acid sequence as set forth in SEQ ID NO: 4 and a VL as in FIG. 31 having an amino acid sequence as set forth in SEQ ID NO: 10.
- the ABP or antibody of the invention comprises a VH having an amino acid sequence as set forth in SEQ ID NO: 5 in FIG. 30 herein, and a VL having an amino acid sequence as set forth in SEQ ID NO: 11 in FIG. 31 herein.
- the anti-OX40 ABP or antibody of the invention comprises the VH and VL regions of the Hu 106-222 antibody or the 106-222 antibody or the Hul06 antibody as disclosed in WO2012/027328
- the anti-OX40 ABP or antibody of the invention is 106-222, Hu 106-222 or Hul06, e.g., as disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011.
- the ABP or antibody of the invention comprises CDRs or VH or VL or antibody sequences with 90% identity to the sequences in this paragraph.
- the anti-OX40 ABP or antibody of the invention comprises the CDRs of the 119-122 antibody, e.g., of FIGS. 34-35 herein, e.g., CDRHl, CDRH2, and CDRH3 having the amino acid sequence as set forth in SEQ ID NOs 13, 14, and 15 respectively .
- the anti-OX40 ABP or antibody of the invention comprises the CDRs of the 119-122 or Hul 19 or Hul 19-222 antibody as disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011.
- the anti-OX40 ABP or antibody of the invention comprises a VH having an amino acid sequence as set forth in SEQ ID NO: 16 in FIG. 34 herein, and a VL having the amino acid sequence as set forth in SEQ ID NO: 22 as shown in FIG. 35 herein.
- the anti-OX40 ABP or antibody of the invention comprises a VH having an amino acid sequence as set forth in SEQ ID NO: 17 and a VL having the amino acid sequence as set forth in SEQ ID NO: 23.
- the anti-OX40 ABP or antibody of the invention comprises the VH and VL regions of the 119-122 or Hul 19 or Hul 19-222 antibody as disclosed in WO2012/027328 (PCT/US2011/048752), international filing date 23 August 2011.
- the ABP or antibody of the invention is 119-222 or Hul 19 or Hul 19-222 antibody, e.g. , as disclosed in
- the ABP or antibody of the invention comprises CDRs or VH or VL or antibody sequences with 90% identity to the sequences in this paragraph.
- the anti-OX40 ABP or antibody of the invention comprises the CDRs of the 119-43-1 antibody, e.g., as shown in FIGS. 38-39 herein.
- the anti-OX40 ABP or antibody of the invention comprises the CDRs of the 119-43-1 antibody as disclosed in WO2013/028231 (PCT/US2012/024570), international filing date 9 Feb. 2012.
- the anti-OX40 ABP or antibody of the invention comprises one of the VH and one of the VL regions of the 119-43-1 antibody as shown in FIGS. 38-41.
- the anti-OX40 ABP or antibody of the invention comprises the VH and VL regions of the 119-43-1 antibody as disclosed in WO2013/028231 (PCT/US2012/024570), international filing date 9 Feb. 2012.
- the ABP or antibody of the invention is 119-43-1 or 119-43-1 chimeric as disclosed in FIGS. 38-41 herein.
- the ABP or antibody of the invention as disclosed in WO2013/028231 (PCT/US2012/024570), international filing date 9 Feb. 2012.
- any one of the ABPs or antibodies described in this paragraph are humanized.
- any one of the any one of the ABPs or antibodies described in this paragraph are engineered to make a humanized antibody.
- the ABP or antibody of the invention comprises CDRs or VH or VL or antibody sequences with 90% identity to the sequences in this paragraph.
- any mouse or chimeric sequences of any anti-OX40 ABP or antibody of the invention are engineered to make a humanized antibody.
- the anti-OX40 ABP or antibody of the invention comprises: (a) a heavy chain variable region CDR1 comprising the amino acid sequence of SEQ ID NO:
- the anti-OX40 ABP or antibody of the invention comprises: (a) a heavy chain variable region CDRl comprising the amino acid sequence of SEQ ID NO: 13; (b) a heavy chain variable region CDR2 comprising the amino acid sequence of SEQ ID NO: 14; (c) a heavy chain variable region CDR3 comprising the amino acid sequence of SEQ ID NO. 15; (d) a light chain variable region CDRl comprising the amino acid sequence of SEQ ID NO. 19; (e) a light chain variable region CDR2 comprising the amino acid sequence of SEQ ID NO. 20; and (f) a light chain variable region CDR3 comprising the amino acid sequence of SEQ ID NO. 21.
- the anti-OX40 ABP or antibody of the invention comprises: a heavy chain variable region CDRl comprising the amino acid sequence of SEQ ID NO: 1 or 13; a heavy chain variable region CDR2 comprising the amino acid sequence of SEQ ID NO: 2 or 14; and/or a heavy chain variable region CDR3 comprising the amino acid sequence of SEQ ID NO: 3 or 15, or a heavy chain variable region CDR having 90% identity thereto.
- the anti-OX40 ABP or antibody of the invention comprises: a light chain variable region CDRl comprising the amino acid sequence of SEQ ID NO: 7 or 19; a light chain variable region CDR2 comprising the amino acid sequence of SEQ ID NO: 8 or 20 and/or a light chain variable region CDR3 comprising the amino acid sequence of SEQ ID NO: 9 or 21, or a heavy chain variable region having 90 percent identity thereto.
- the anti-OX40 ABP or antibody of the invention comprises: a light chain variable region ("VL") comprising the amino acid sequence of SEQ ID NO: 10, 11, 22 or 23, or an amino acid sequence with at least 90 percent identity to the amino acid sequences of SEQ ID NO: 10, 11, 22 or 23.
- VL light chain variable region
- VH heavy chain variable region
- the anti-OX40 ABP or antibody of the invention comprises a variable heavy chain sequence of SEQ ID NO: 5 and a variable light chain sequence of SEQ ID NO: 11, or a sequence having 90 percent identity thereto.
- the anti-OX40 ABP or antibody of the invention comprises a variable heavy chain sequence of SEQ ID NO: 17 and a variable light chain sequence of SEQ ID NO: 23 or a sequence having 90 percent identity thereto.
- the anti-OX40 ABP or antibody of the invention comprises a variable light chain encoded by the nucleic acid sequence of SEQ ID NO: 12, or 24, or a nucleic acid sequence with at least 90 percent identity to the nucleotide sequences of SEQ ID NO: 12 or 24.
- the anti-OX40 ABP or antibody of the invention comprises a variable heavy chain encoded by a nucleic acid sequence of SEQ ID NO: 6 or 18, or a nucleic acid sequence with at least 90 percent identity to nucleotide sequences of SEQ ID NO: 6 or 18.
- the monoclonal antibodies comprise a variable light chain comprising the amino acid sequence of SEQ ID NO: 10 or 22, or an amino acid sequence with at least 90 percent identity to the amino acid sequences of SEQ ID NO: 10 or 22. Further provided are monoclonal antibodies comprising a variable heavy chain comprising the amino acid sequence of SEQ ID NO: 4 or 16, or an amino acid sequence with at least 90 percent identity to the amino acid sequences of SEQ ID NO: 4 or 16.
- CTLA-4 is a T cell surface molecule that was originally identified by differential screening of a murine cytolytic T cell cDNA library (Brunet et al., Nature 328:267-
- CTLA-4 is also a member of the immunoglobulin (Ig) superfamily; CTLA-4 comprises a single extracellular Ig domain.
- Ig immunoglobulin
- CTLA-4 transcripts have been found in T cell populations having cytotoxic activity, suggesting that CTLA-4 might function in the cytolytic response (Brunet et al, supra; Brunet et al., Immunol. Rev. 103-(21-36 (1988)).
- CTLA-4 (Dariavach et al, Eur. J. Immunol. 18: 1901-1905 (1988)) to the same
- chromosomal region (2q33-34) as CD28 (Lafage-Pochitaloff et al., Immunogenetics 31 : 198-201 (1990)). Sequence comparison between this human CTLA-4 DNA and that encoding CD28 proteins reveals significant homology of sequence, with the greatest degree of homology in the juxtamembrane and cytoplasmic regions (Brunet et al., 1988, supra; Dariavach et al, 1988, supra). Yervoy (ipilimumab) is a fully human CTLA-4 antibody marketed by Bristol Myers Squibb. The protein structure of ipilimumab and methods are using are described in US Patent Nos. 6,984,720 and 7,605,238.
- Suitable anti-CTLA4 antibodies for use in the methods of the invention include, without limitation, anti-CTLA4 antibodies, human anti-CTLA4 antibodies, mouse anti- CTLA4 antibodies, mammalian anti-CTLA4 antibodies, humanized anti-CTLA4 antibodies, monoclonal anti-CTLA4 antibodies, polyclonal anti-CTLA4 antibodies, chimeric anti-CTLA4 antibodies, ipilimumab, tremelimumab, anti-CD28 antibodies, anti- CTLA4 adnectins, anti-CTLA4 domain antibodies, single chain anti-CTLA4 fragments, heavy chain anti-CTLA4 fragments, light chain anti-CTLA4 fragments, inhibitors of CTLA4 that agonize the co-stimulatory pathway, the antibodies disclosed in PCT
- CTLA-4 antibodies are described in U.S. Pat. Nos. 5,811,097, 5,855,887, 6,051,227, and 6,984,720; in PCT Publication Nos. WO 01/14424 and WO 00/37504; and in U.S. Publication Nos. US 2002/0039581 and US 2002/086014.
- Other anti-CTLA-4 antibodies that can be used in a method of the present invention include, for example, those disclosed in: WO 98/42752; U.S. Pat. Nos. 6,682,736 and 6,207,156; Hurwitz et al., Proc. Natl. Acad. Sci.
- an “immuno-modulator” or “immuno-modulatory agent” refers to any substance including monoclonal antibodies that affects the immune system.
- the immuno-modulator or immuno-modulatory agent upregulates the immune system.
- Immuno-modulators can be used as anti-neoplastic agents for the treatment of cancer.
- immune-modulators include, but are not limited to, anti- PD-1 antibodies (Opdivo/nivolumab and Keytruda/pembrolizumab), anti-CTLA-4 antibodies such as ipilimumab (YERVOY), and anti-OX40 antibodies.
- agonist refers to an antigen binding protein including but not limited to an antibody, which upon contact with a co-signalling receptor causes one or more of the following (1) stimulates or activates the receptor, (2) enhances, increases or promotes, induces or prolongs an activity, function or presence of the receptor and/or (3) enhances, increases, promotes or induces the expression of the receptor.
- Agonist activity can be measured in vitro by various assays know in the art such as, but not limited to, measurement of cell signalling, cell proliferation, immune cell activation markers, cytokine production.
- Agonist activity can also be measured in vivo by various assays that measure surrogate end points such as, but not limited to the measurement of T cell proliferation or cytokine production.
- the term "antagonist” refers to an antigen binding protein including but not limited to an antibody, which upon contact with a co-signalling receptor causes one or more of the following (1) attenuates, blocks or inactivates the receptor and/or blocks activation of a receptor by its natural ligand, (2) reduces, decreases or shortens the activity, function or presence of the receptor and/or (3) reduces, descrease, abrogates the expression of the receptor.
- Antagonist activity can be measured in vitro by various assays know in the art such as, but not limited to, measurement of an increase or decrease in cell signalling, cell proliferation, immune cell activation markers, cytokine production. Antagonist activity can also be measured in vivo by various assays that measure surrogate end points such as, but not limited to the measurement of T cell proliferation or cytokine production.
- cross competes for binding refers to any agent such as an antibody that will compete for binding to a target with any of the agents of the present invention.
- Competition for binding between two antibodies can be tested by various methods known in the art including Flow cytometry, Meso Scale Discovery and ELISA. Binding can be measured directly, meaning two or more binding proteins can be put in contact with a co- signalling receptor and bind may be measured for one or each. Alternatively, binding of molecules or interest can be tested against the binding or natural ligand and quantitatively compared with each other.
- antibody is used herein in the broadest sense to refer to molecules with an immunoglobulin-like domain (for example IgG, IgM, IgA, IgD or IgE) and includes monoclonal, recombinant, polyclonal, chimeric, human, humanized, multispecific antibodies, including bispecific antibodies, and heteroconjugate antibodies; a single variable domain (e.g., VH, VHH, VL, domain antibody (dAbTM)), antigen binding antibody fragments, Fab, F(ab') 2 , Fv, disulphide linked Fv, single chain Fv, disulphide-linked scFv, diabodies, TANDABSTM, etc. and modified versions of any of the foregoing (for a summary of alternative "antibody” formats see, e.g., Holliger and Hudson, Nature Biotechnology, 2005, Vol 23, No. 9, 1126-1136).
- Alternative antibody formats include alternative scaffolds in which the one or more CDRs of the antigen binding protein can be arranged onto a suitable non- immunoglobulin protein scaffold or skeleton, such as an affibody, a SpA scaffold, an LDL receptor class A domain, an avimer (see, e.g., U.S. Patent Application Publication Nos. 2005/0053973, 2005/0089932, 2005/0164301) or an EGF domain.
- a suitable non- immunoglobulin protein scaffold or skeleton such as an affibody, a SpA scaffold, an LDL receptor class A domain, an avimer (see, e.g., U.S. Patent Application Publication Nos. 2005/0053973, 2005/0089932, 2005/0164301) or an EGF domain.
- domain refers to a folded protein structure which retains its tertiary structure independent of the rest of the protein. Generally domains are responsible for discrete functional properties of proteins and in many cases may be added, removed or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain.
- single variable domain refers to a folded polypeptide domain comprising sequences characteristic of antibody variable domains. It therefore includes complete antibody variable domains such as VH, VHH and VL and modified antibody variable domains, for example, in which one or more loops have been replaced by sequences which are not characteristic of antibody variable domains, or antibody variable domains which have been truncated or comprise N- or C-terminal extensions, as well as folded fragments of variable domains which retain at least the binding activity and specificity of the full-length domain.
- a single variable domain is capable of binding an antigen or epitope independently of a different variable region or domain.
- a "domain antibody” or “dAb (TM) may be considered the same as a "single variable domain".
- a single variable domain may be a human single variable domain, but also includes single variable domains from other species such as rodent nurse shark and Camelid VHH dAbsTM.
- Camelid VHH are immunoglobulin single variable domain polypeptides that are derived from species including camel, llama, alpaca, dromedary, and guanaco, which produce heavy chain antibodies naturally devoid of light chains.
- Such VHH domains may be humanized according to standard techniques available in the art, and such domains are considered to be "single variable domains".
- VH includes camelid VHH domains.
- An antigen binding fragment may be provided by means of arrangement of one or more CDRs on non-antibody protein scaffolds.
- Protein Scaffold as used herein includes but is not limited to an immunoglobulin (Ig) scaffold, for example an IgG scaffold, which may be a four chain or two chain antibody, or which may comprise only the Fc region of an antibody, or which may comprise one or more constant regions from an antibody, which constant regions may be of human or primate origin, or which may be an artificial chimera of human and primate constant regions.
- the protein scaffold may be an Ig scaffold, for example an IgG, or IgA scaffold.
- the IgG scaffold may comprise some or all the domains of an antibody (i.e. CHI, CH2, CH3, VH, VL).
- the antigen binding protein may comprise an IgG scaffold selected from IgGl, IgG2, IgG3, IgG4 or IgG4PE.
- the scaffold may be IgGl .
- the scaffold may consist of, or comprise, the Fc region of an antibody, or is a part thereof.
- Affinity is the strength of binding of one molecule, e.g. an antigen binding protein of the invention, to another, e.g. its target antigen, at a single binding site.
- the binding affinity of an antigen binding protein to its target may be determined by equilibrium methods (e.g.
- ELISA enzyme-linked immunoabsorbent assay
- RIA radioimmunoassay
- kinetics e.g. BIACORETM analysis
- the BiacoreTM methods described in Example 5 may be used to measure binding affinity.
- Avidity is the sum total of the strength of binding of two molecules to one another at multiple sites, e.g. taking into account the valency of the interaction.
- the molecule such as an antigen binding protein or nucleic acid
- the molecule is removed from the environment in which it may be found in nature.
- the molecule may be purified away from substances with which it would normally exist in nature.
- the mass of the molecule in a sample may be 95% of the total mass.
- expression vector means an isolated nucleic acid which can be used to introduce a nucleic acid of interest into a cell, such as a eukaryotic cell or prokaryotic cell, or a cell free expression system where the nucleic acid sequence of interest is expressed as a peptide chain such as a protein.
- Such expression vectors may be, for example, cosmids, plasmids, viral sequences, transposons, and linear nucleic acids comprising a nucleic acid of interest.
- Expression vectors within the scope of the disclosure may provide necessary elements for eukaryotic or prokaryotic expression and include viral promoter driven vectors, such as CMV promoter driven vectors, e.g. , pcDNA3.1, pCEP4, and their derivatives, Baculovirus expression vectors, Drosophila expression vectors, and expression vectors that are driven by mammalian gene promoters, such as human Ig gene promoters.
- viral promoter driven vectors such as CMV promoter driven vectors, e.g. , pcDNA3.1, pCEP4, and their derivatives
- Baculovirus expression vectors e.g. , Drosophila expression vectors
- Drosophila expression vectors e.g., pcDNA3.1, pCEP4
- expression vectors that are driven by mammalian gene promoters such as human Ig gene promoters.
- prokaryotic expression vectors such as T7 promoter driven vectors, e.g., pET
- recombinant host cell means a cell that comprises a nucleic acid sequence of interest that was isolated prior to its introduction into the cell.
- the nucleic acid sequence of interest may be in an expression vector while the cell may be prokaryotic or eukaryotic.
- exemplary eukaryotic cells are mammalian cells, such as but not limited to, COS-1, COS-7, HEK293, BHK21, CHO, BSC-1, HepG2, 653, SP2/0, NSO, 293, He La, myeloma, lymphoma cells or any derivative thereof.
- the eukaryotic cell is a HEK293, NSO, SP2/0, or CHO cell.
- a recombinant cell according to the disclosure may be generated by transfection, cell fusion, immortalization, or other procedures well known in the art.
- a nucleic acid sequence of interest, such as an expression vector, transfected into a cell may be extrachromasomal or stably integrated into the chromosome of the cell.
- a “chimeric antibody” refers to a type of engineered antibody which contains a naturally-occurring variable region (light chain and heavy chains) derived from a donor antibody in association with light and heavy chain constant regions derived from an acceptor antibody.
- a “humanized antibody” refers to a type of engineered antibody having its CDRs derived from a non-human donor immunoglobulin, the remaining immunoglobulin-derived parts of the molecule being derived from one or more human immunoglobulin(s).
- framework support residues may be altered to preserve binding affinity (see, e.g., Queen et al. Proc. Natl Acad Sci USA, 86: 10029-10032 (1989), Hodgson, et al,
- a suitable human acceptor antibody may be one selected from a conventional database, e.g., the KABATTM database, Los Alamos database, and Swiss Protein database, by homology to the nucleotide and amino acid sequences of the donor antibody.
- a human antibody characterized by a homology to the framework regions of the donor antibody (on an amino acid basis) may be suitable to provide a heavy chain constant region and/or a heavy chain variable framework region for insertion of the donor CDRs.
- a suitable acceptor antibody capable of donating light chain constant or variable framework regions may be selected in a similar manner. It should be noted that the acceptor antibody heavy and light chains are not required to originate from the same acceptor antibody.
- the prior art describes several ways of producing such humanized antibodies - see, for example, EP-A-0239400 and EP-A-054951.
- Fully human antibody includes antibodies having variable and constant regions (if present) derived from human germline immunoglobulin sequences.
- the human sequence antibodies of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site- specific mutagenesis in vitro or by somatic mutation in vivo).
- Fully human antibodies comprise amino acid sequences encoded only by polynucleotides that are ultimately of human origin or amino acid sequences that are identical to such sequences.
- antibodies encoded by human immunoglobulin-encoding DNA inserted into a mouse genome produced in a transgenic mouse are fully human antibodies since they are encoded by DNA that is ultimately of human origin. In this situation, human
- immunoglobulin-encoding DNA can be rearranged (to encode an antibody) within the mouse, and somatic mutations may also occur.
- Antibodies encoded by originally human DNA that has undergone such changes in a mouse are fully human antibodies as meant herein.
- the use of such transgenic mice makes it possible to select fully human antibodies against a human antigen.
- fully human antibodies can be made using phage display technology wherein a human DNA library is inserted in phage for generation of antibodies comprising human germline DNA sequence.
- the term "donor antibody” refers to an antibody that contributes the amino acid sequences of its variable regions, CDRs, or other functional fragments or analogs thereof to a first immunoglobulin partner. The donor, therefore, provides the altered immunoglobulin coding region and resulting expressed altered antibody with the antigenic specificity and neutralising activity characteristic of the donor antibody.
- acceptor antibody refers to an antibody that is heterologous to the donor antibody, which contributes all (or any portion) of the amino acid sequences encoding its heavy and/or light chain framework regions and/or its heavy and/or light chain constant regions to the first immunoglobulin partner.
- a human antibody may be the acceptor antibody.
- VH and VL are used herein to refer to the heavy chain variable region and light chain variable region respectively of an antigen binding protein.
- CDRs are defined as the complementarity determining region amino acid sequences of an antigen binding protein. These are the hypervariable regions of immunoglobulin heavy and light chains. There are three heavy chain and three light chain CDRs (or CDR regions) in the variable portion of an immunoglobulin. Thus, “CDRs” as used herein refers to all three heavy chain CDRs, all three light chain CDRs, all heavy and light chain CDRs, or at least two CDRs.
- the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine
- Type II PRMT methyltransferase
- a second pharmaceutical composition comprising a therapeutically effective amount of an immuno-modulatory agent, wherein the immuno-modulatory agent is selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD- 1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1 ; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO: 3; CDRL1 as set forth in SEQ ID NO: 7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 11.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is
- the Type II PRMT inhibitor is Compound C.
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent is provided, wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an agonist anti-OX40 antibody or antigen binding fragment thereof.
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immunomodulatory agent wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in S
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and a second pharmaceutical composition comprising a therapeutically effective amount of an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno- modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immunomodulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the present invention provides a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and a second pharmaceutical composition comprising a therapeutically effective amount of an immuno-modulatory agent, wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an agonist anti-OX40 antibody or antigen binding fragment thereof.
- Type II PRMT Type II protein arginine methyltransferase
- a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and a second pharmaceutical composition comprising a therapeutically effective amount of an immunomodulatory agent
- the Type II PRMT inhibitor is Compound C and and the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- a pharmaceutical composition comprising a therapeutically effective amount of a Type II protein arginine
- Type II PRMT methyltransferase (Type II PRMT) inhibitor and a second pharmaceutical composition comprising a therapeutically effective amount of an immuno-modulatory agent
- the Type II PRMT inhibitor is Compound C and and the immunomodulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent, together with at least one of: a pharmaceutically acceptable carrier and a pharmaceutically acceptable diluent, thereby treating the cancer in the human, wherein the immuno-modulatory agent is selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD- 1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- Type II PRMT Type II PRMT
- an immuno-modulatory agent is selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD- 1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD- 1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1 ; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO: 3; CDRL1 as set forth in SEQ ID NO: 7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI. In another aspect, the Type II PRMT inhibitor is
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally.
- the Type II PRMT inhibitor is administered orally.
- methods are provided for treating cancer in a human in need thereof, the methods comprising administering to the human a combination of Compound C and an agonist anti-OX40 antibody or antigen binding fragment thereof.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a combination of Compound C and an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO: 3; CDRL1 as set forth in SEQ ID NO: 7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a combination of Compound C and an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a therapeutically effective amount of a pharmaceutical composition comprising a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and a pharmaceutical composition comprising an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof, thereby treating the cancer in the human.
- a pharmaceutical composition comprising a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and a pharmaceutical composition comprising an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof, thereby treating the cancer in the human.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti- PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 11.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally. In one aspect, the Type II PRMT inhibitor is administered orally.
- methods are provided for treating cancer in a human in need thereof, the methods comprising administering to the human a therapeutically effective amount of a pharmaceutical composition comprising Compound C and a pharmaceutical composition comprising an agonist anti-OX40 antibody or antigen binding fragment thereof.
- methods for treating cancer in a human in need thereof, the methods comprising administering to the human a therapeutically effective amount of a pharmaceutical composition comprising Compound C and a pharmaceutical composition comprising an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- methods are provided for treating cancer in a human in need thereof, the methods comprising administering to the human a therapeutically effective amount of a pharmaceutical composition comprising Compound C and a pharmaceutical composition comprising an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as
- composition comprising Compound C and a pharmaceutical composition comprising an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- the present invention provides use of a combination of aType II protein arginine methyltransferase (Type II PRMT) inhibitor and an immunomodulatory agent for the manufacture of a medicament, wherein the immuno-modulatory agent is selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the present invention provides use of a combination of aType II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for the treatment of cancer, wherein the immuno-modulatory agent is selected from an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti- OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally. In one aspect, the Type II PRMT inhibitor is administered orally. In one embodiment, use of a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immunomodulatory agent is provided for the manufacture of a medicament, wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an agonist anti-OX40 antibody or antigen binding fragment thereof.
- Type II PRMT Type II protein arginine methyltransferase
- Type II PRMT Type II protein arginine methyltransferase
- an immunomodulatory agent for the manufacture of a medicament
- the Type II PRMT inhibitor is Compound C
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1 ; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3 ; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- Type II PRMT Type II protein arginine methyltransferase
- an immuno-modulatory agent for the manufacture of a medicament
- the Type II PRMT inhibitor is Compound C
- the immunomodulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 1 1.
- the present invention provides a combination of aType II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for use in the treatment of cancer, wherein the immuno-modulatory agent is selected from an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno- modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD- 1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1 ; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immunomodulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from:
- the Type II PRMT inhibitor is administered orally.
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for use in the treatment of cancer is provided, wherein the Type II PRMT inhibitor is Compound C and the immuno- modulatory agent is an agonist anti-OX40 antibody or antigen binding fragment thereof.
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for use in the treatment of cancer wherein the Type II PRMT inhibitor is Compound C and the immunomodulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:
- a combination of a Type II protein arginine methyltransferase (Type II PRMT) inhibitor and an immuno-modulatory agent for use in the treatment of cancer wherein the Type II PRMT inhibitor is Compound C and the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- a product containing a Type II PRMT inhibitor and an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD- 1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof as a combined preparation for simultaneous, separate, or sequential use in medicine is provided.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti- OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally. In one aspect, the Type II PRMT inhibitor is administered orally. In one embodiment, a product containing Compound C and an agonist anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine is provided.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine wherein the anti-OX40 antibody or antigen binding fragment thereof comprises one or more of: CDRHl as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO: 2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine wherein the anti-OX40 antibody or antigen binding fragment thereof comprises a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- a product containing a Type II PRMT inhibitor and an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof as a combined preparation for simultaneous, separate, or sequential use in medicine is provided.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti- OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 11.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally. In one aspect, the Type II PRMT inhibitor is administered orally. In one embodiment, a product containing Compound C and an agonist anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine is provided.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine wherein the anti-OX40 antibody or antigen binding fragment thereof comprises one or more of: CDRHl as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO: 2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in medicine wherein the anti-OX40 antibody or antigen binding fragment thereof comprises a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- a product containing a Type II PRMT inhibitor and an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof as a combined preparation for simultaneous, separate, or sequential use in treating cancer in a human subject is provided.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti- PD-1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 11.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- the Type II PRMT inhibitor is Compound B.
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally. In one aspect, the Type II PRMT inhibitor is administered orally. In one embodiment, a product containing Compound C and an agonist anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject is provided.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject wherein the anti-OX40 antibody or antigen binding fragment thereof comprises one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO: 2; CDRH3 as set forth in SEQ ID NO: 3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject wherein the anti-OX40 antibody or antigen binding fragment thereof comprises a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- a product containing a Type II PRMT inhibitor and an immuno-modulatory agent selected from: an anti-CTLA4 antibody or antigen binding fragment thereof, an anti-PD- 1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, and an anti-OX40 antibody or antigen binding fragment thereof as a combined preparation for simultaneous, separate, or sequential use in treating cancer in a human subject is provided, wherein the cancer is colon cancer or lymphoma.
- the Type II PRMT inhibitor is a protein arginine methyltransferase 5 (PRMT5) inhibitor or a protein arginine methyltransferase 9 (PRMT9) inhibitor.
- the immuno-modulatory agent is an anti-PD-1 antibody or antigen binding fragment thereof.
- the anti-PD- 1 antibody is pembrolizumab or nivolumab.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRHl as set forth in SEQ ID NO: 1 ; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO: 3; CDRL1 as set forth in SEQ ID NO: 7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- the immuno-modulatory agent is an anti-OX40 antibody or antigen binding fragment thereof comprising a variable heavy chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 5 and a variable light chain sequence having at least 90% sequence identity to the amino acid sequence set forth in SEQ ID NO: 1 1.
- the Type II PRMT inhibitor is a compound of Formula III, IV, VII, VIII, IX, X, or XI. In another aspect, the Type II PRMT inhibitor is
- the Type II PRMT inhibitor is Compound C.
- the Type II PRMT inhibitor and the immuno-modulatory agent are administered to the patient in a route selected from: simultaneously, sequentially, in any order, systemically, orally, intravenously, and intratumorally.
- the Type II PRMT inhibitor is administered orally.
- a product containing Compound C and an agonist anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject is provided, wherein the cancer is colon cancer or lymphoma.
- a product containing Compound C and an anti- OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject wherein the cancer is colon cancer or lymphoma
- the anti-OX40 antibody or antigen binding fragment thereof comprises one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO:8 and/or CDRL3 as set forth in SEQ ID NO:9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- a product containing Compound C and an anti-OX40 antibody or antigen binding fragment thereof for simultaneous, separate, or sequential use in treating cancer in a human subject wherein the cancer is colon cancer or lymphoma, and wherein the anti-OX40 antibody or antigen binding fragment thereof comprises a heavy chain variable region having at least 90% sequence identity to SEQ ID NO: 5 and a light chain variable region having at least 90% identity to SEQ ID NO: 11.
- the cancer is a solid tumor or a haematological cancer.
- the cancer is selected from head and neck cancer, breast cancer, lung cancer, colon cancer, ovarian cancer, prostate cancer, gliomas, glioblastoma, astrocytomas, glioblastoma multiforme, Bannayan-Zonana syndrome, Cowden disease, Lhermitte- Duclos disease, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma,
- lymphoblastic T cell leukemia Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, AML, Chronic neutrophilic leukemia, Acute lymphoblastic T cell leukemia, plasmacytoma, Immunoblastic large cell leukemia, Mantle cell leukemia, Multiple myeloma Megakaryoblastic leukemia, multiple myeloma, acute megakaryocytic leukemia, promyelocytic leukemia, Erythroleukemia, malignant lymphoma, hodgkins lymphoma, non-hodgkins lymphoma, lymphoblastic T cell leukemia, Chronic myelogenous leukemia, Chronic lymphocytic leukemia, Hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, AML, Chronic neutrophilic leukemia, Acute
- the methods of the present invention further comprise administering at least one neo-plastic agent to said human.
- the human has a solid tumor.
- the tumor is selected from head and neck cancer, gastric cancer, melanoma, renal cell carcinoma (RCC), esophageal cancer, non-small cell lung carcinoma, prostate cancer, colorectal cancer, ovarian cancer and pancreatic cancer.
- the human has a liquid tumor such as diffuse large B cell lymphoma (DLBCL), multiple myeloma, chronic lyphomblastic leukemia (CLL), follicular lymphoma, acute myeloid leukemia and chronic myelogenous leukemia.
- DLBCL diffuse large B cell lymphoma
- CLL chronic lyphomblastic leukemia
- follicular lymphoma acute myeloid leukemia and chronic myelogenous leukemia.
- the present disclosure also relates to a method for treating or lessening the severity of a cancer selected from: brain (gliomas), glioblastomas, Bannayan-Zonana syndrome, Cowden disease, Lhermitte-Duclos disease, breast, inflammatory breast cancer, Wilm's tumor, Ewing's sarcoma, Rhabdomyosarcoma, ependymoma, medulloblastoma, colon, head and neck, kidney, lung, liver, melanoma, ovarian, pancreatic, prostate, sarcoma, osteosarcoma, giant cell tumor of bone, thyroid, lymphoblastic T-cell leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, hairy-cell leukemia, acute lymphoblastic leukemia, acute myelogenous leukemia, chronic neutrophilic leukemia, acute lymphoblastic T-cell leukemia, plasmacytoma, immunoblastic large cell leuk
- treating means: (1) to ameliorate or prevent the condition of one or more of the biological manifestations of the condition, (2) to interfere with (a) one or more points in the biological cascade that leads to or is responsible for the condition or (b) one or more of the biological manifestations of the condition, (3) to alleviate one or more of the symptoms, effects or side effects associated with the condition or treatment thereof, or (4) to slow the progression of the condition or one or more of the biological manifestations of the condition.
- Prophylactic therapy is also contemplated thereby.
- prevention is not an absolute term.
- prevention is understood to refer to the prophylactic administration of a drug to substantially diminish the likelihood or severity of a condition or biological manifestation thereof, or to delay the onset of such condition or biological manifestation thereof.
- Prophylactic therapy is appropriate, for example, when a subject is considered at high risk for developing cancer, such as when a subject has a strong family history of cancer or when a subject has been exposed to a carcinogen.
- cancer As used herein, the terms "cancer,” “neoplasm,” and “tumor” are used
- a cancer cell refers to cells that have undergone a malignant transformation that makes them pathological to the host organism.
- Primary cancer cells can be readily distinguished from non-cancerous cells by well-established techniques, particularly histological examination.
- the definition of a cancer cell includes not only a primary cancer cell, but any cell derived from a cancer cell ancestor. This includes metastasized cancer cells, and in vitro cultures and cell lines derived from cancer cells.
- a "clinically detectable" tumor is one that is detectable on the basis of tumor mass; e.g., by procedures such as computed tomography (CT) scan, magnetic resonance imaging (MRI), X-ray, ultrasound or palpation on physical examination, and/or which is detectable because of the expression of one or more cancer-specific antigens in a sample obtainable from a patient.
- CT computed tomography
- MRI magnetic resonance imaging
- X-ray X-ray
- ultrasound or palpation e.g., ultrasound or palpation on physical examination
- Tumors may be a hematopoietic (or hematologic or hematological or blood-related) cancer, for example, cancers derived from blood cells or immune cells, which may be referred to as "liquid tumors.”
- liquid tumors Specific examples of clinical conditions based on hematologic tumors include leukemias such as chronic myelocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia and acute lymphocytic leukemia; plasma cell malignancies such as multiple myeloma, MGUS and Waldenstrom's macroglobulinemia; lymphomas such as non-Hodgkin's lymphoma, Hodgkin's lymphoma; and the like.
- leukemias such as chronic myelocytic leukemia, acute myelocytic leukemia, chronic lymphocytic leukemia and acute lymphocytic leukemia
- plasma cell malignancies such as multiple myeloma, MGUS
- the cancer may be any cancer in which an abnormal number of blast cells or unwanted cell proliferation is present or that is diagnosed as a hematological cancer, including both lymphoid and myeloid malignancies.
- Myeloid malignancies include, but are not limited to, acute myeloid (or myelocytic or myelogenous or myeloblastic) leukemia (undifferentiated or differentiated), acute promyeloid (or promyelocytic or promyelogenous or promyeloblastic) leukemia, acute myelomonocytic (or myelomonoblastic) leukemia, acute monocytic (or monoblastic) leukemia, erythroleukemia and megakaryocytic (or megakaryoblastic) leukemia.
- leukemias may be referred together as acute myeloid (or myelocytic or myelogenous) leukemia (AML).
- Myeloid malignancies also include myeloproliferative disorders (MPD) which include, but are not limited to, chronic myelogenous (or myeloid) leukemia (CML), chronic myelomonocytic leukemia (CMML), essential thrombocythemia (or thrombocytosis), and polcythemia vera (PCV).
- CML chronic myelogenous leukemia
- CMML chronic myelomonocytic leukemia
- PCV polcythemia vera
- Myeloid malignancies also include myelodysplasia (or myelodysplastic syndrome or MDS), which may be referred to as refractory anemia (RA), refractory anemia with excess blasts (RAEB), and refractory anemia with excess blasts in transformation (RAEBT); as well as myelofibrosis (MFS) with or without agnogenic myeloid metaplasia.
- myelodysplasia or myelodysplastic syndrome or MDS
- MDS myelodysplasia
- RA refractory anemia
- RAEB refractory anemia with excess blasts
- RAEBT refractory anemia with excess blasts in transformation
- MFS myelofibrosis
- Hematopoietic cancers also include lymphoid malignancies, which may affect the lymph nodes, spleens, bone marrow, peripheral blood, and/or extranodal sites.
- Lymphoid cancers include B-cell malignancies, which include, but are not limited to, B-cell non- Hodgkin's lymphomas (B-NHLs).
- B-NHLs may be indolent (or low-grade), intermediate- grade (or aggressive) or high-grade (very aggressive).
- Indolent Bcell lymphomas include follicular lymphoma (FL); small lymphocytic lymphoma (SLL); marginal zone lymphoma (MZL) including nodal MZL, extranodal MZL, splenic MZL and splenic MZL with villous lymphocytes; lymphoplasmacytic lymphoma (LPL); and mucosa-associated-lymphoid tissue (MALT or extranodal marginal zone) lymphoma.
- FL follicular lymphoma
- SLL small lymphocytic lymphoma
- MZL marginal zone lymphoma
- LPL lymphoplasmacytic lymphoma
- MALT mucosa-associated-lymphoid tissue
- Intermediate-grade B-NHLs include mantle cell lymphoma (MCL) with or without leukemic involvement, diffuse large cell lymphoma (DLBCL), follicular large cell (or grade 3 or grade 3B) lymphoma, and primary mediastinal lymphoma (PML).
- MCL mantle cell lymphoma
- DLBCL diffuse large cell lymphoma
- follicular large cell or grade 3 or grade 3B lymphoma
- PML primary mediastinal lymphoma
- High-grade B-NHLs include Burkitt's lymphoma (BL), Burkitt-like lymphoma, small non-cleaved cell lymphoma (SNCCL) and
- B-NHLs include immunoblastic lymphoma (or immunocytoma), primary effusion lymphoma, HIV associated (or AIDS related) lymphomas, and post-transplant lymphoproliferative disorder (PTLD) or lymphoma.
- B-cell malignancies also include, but are not limited to, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), Waldenstrom's macroglobulinemia (WM), hairy cell leukemia (HCL), large granular lymphocyte (LGL) leukemia, acute lymphoid (or lymphocytic or lymphoblastic) leukemia, and Castleman's disease.
- NHL may also include T-cell non-Hodgkin's lymphoma s(T-NHLs), which include, but are not limited to T-cell non-Hodgkin's lymphoma not otherwise specified (NOS), peripheral T-cell lymphoma (PTCL), anaplastic large cell lymphoma (ALCL), angioimmunoblastic lymphoid disorder (AILD), nasal natural killer (NK) cell / T-cell lymphoma, gamma/delta lymphoma, cutaneous T cell lymphoma, mycosis fungoides, and Sezary syndrome.
- T-NHLs T-cell non-Hodgkin's lymphoma s
- T-NHLs T-cell non-Hodgkin's lymphoma not otherwise specified
- PTCL peripheral T-cell lymphoma
- ALCL anaplastic large cell lymphoma
- AILD angioimmunoblastic lymphoid disorder
- NK nasal natural killer
- Hematopoietic cancers also include Hodgkin's lymphoma (or disease) including classical Hodgkin's lymphoma, nodular sclerosing Hodgkin's lymphoma, mixed cellularity Hodgkin's lymphoma, lymphocyte predominant (LP) Hodgkin's lymphoma, nodular LP Hodgkin's lymphoma,and lymphocyte depleted Hodgkin's lymphoma.
- Hematopoietic cancers also include plasma cell diseases or cancers such as multiple myeloma (MM) including smoldering MM, monoclonal gammopathy of undetermined (or unknown or unclear) significance (MGUS), plasmacytoma (bone, extramedullary), lymphoplasmacytic lymphoma (LPL), Waldenstrom's Macroglobulinemia, plasma cell leukemia, and primary amyloidosis (AL).
- MM multiple myeloma
- MGUS monoclonal gammopathy of undetermined (or unknown or unclear) significance
- MGUS monoclonal gammopathy of undetermined (or unknown or unclear) significance
- plasmacytoma bone, extramedullary
- LPL lymphoplasmacytic lymphoma
- Waldenstrom's Macroglobulinemia plasma cell leukemia
- plasma cell leukemia and primary amyloidosis
- AL primary amyloidosis
- Hematopoietic cancers may also
- Tissues which include hematopoietic cells referred herein to as "hematopoietic cell tissues” include bone marrow; peripheral blood; thymus; and peripheral lymphoid tissues, such as spleen, lymph nodes, lymphoid tissues associated with mucosa (such as the gut-associated lymphoid tissues), tonsils, Peyer's patches and appendix, and lymphoid tissues associated with other mucosa, for example, the bronchial linings.
- hematopoietic cell tissues include bone marrow; peripheral blood; thymus; and peripheral lymphoid tissues, such as spleen, lymph nodes, lymphoid tissues associated with mucosa (such as the gut-associated lymphoid tissues), tonsils, Peyer's patches and appendix, and lymphoid tissues associated with other mucosa, for example, the bronchial linings.
- Compound A 2 means an immuno-modulatory agent selected from: an anti-PD-1 antibody or antigen binding fragment thereof, an anti-PDLl antibody or antigen binding fragment thereof, an anti-CTLA4 antibody or antigen binding fragment thereof, or an anti-OX40 antibody or antigen binding fragment thereof.
- Compound A 2 is an anti-PD-1 antibody.
- Compound A 2 may be selected from nivolumab and pembrolizumab.
- Compound A 2 is an agonist antibody directed to OX40 or antigen binding portion thereof comprising a VH domain comprising an amino acid sequence at least 90% identical to the amino acid sequence set forth in SEQ ID NO:5; and a VL domain comprising an amino acid sequence at least 90% identical to the amino acid sequence as set forth in SEQ ID NO: 11.
- Compound A 2 is an agonist antibody direct to OX40 or antigen binding portion thereof comprising an anti-OX40 antibody or antigen binding fragment thereof comprising one or more of: CDRH1 as set forth in SEQ ID NO: 1; CDRH2 as set forth in SEQ ID NO:2; CDRH3 as set forth in SEQ ID NO:3; CDRL1 as set forth in SEQ ID NO:7; CDRL2 as set forth in SEQ ID NO: 8 and/or CDRL3 as set forth in SEQ ID NO: 9 or a direct equivalent of each CDR wherein a direct equivalent has no more than two amino acid substitutions in said CDR.
- Compound B 2 means a Type II PRMT inhibitor.
- Compound B 2 is a compound of Formula III, IV, VII, VIII, IX, X, or XI.
- Compound B 2 is Compound C.
- the combinations of this invention are administered within a "specified period”.
- specified period and grammatical variations thereof, as used herein, means the interval of time between the administration of one of Compound A 2 and Compound B 2 and the other of Compound A 2 and Compound B 2 . Unless otherwise defined, the specified period can include simultaneous administration. Unless otherwise defined, the specified period refers to administration of Compound A 2 and Compound B 2 during a single day.
- the specified period will be about 24 hours; suitably they will both be administered within about 12 hours of each other - in this case, the specified period will be about 12 hours; suitably they will both be administered within about 11 hours of each other - in this case, the specified period will be about 11 hours; suitably they will both be administered within about 10 hours of each other - in this case, the specified period will be about 10 hours; suitably they will both be administered within about 9 hours of each other - in this case, the specified period will be about 9 hours; suitably they will both be administered within about 8 hours of each other - in this case, the specified period will be about 8 hours; suitably they will both be administered within about 7 hours of each other - in this case, the specified period will be about 7 hours; suitably they will both be administered within about 6 hours of each other - in this case, the specified period will be about 6 hours; suitably they
- the compounds when the combination of the invention is administered for a "specified period", the compounds will be co-administered for a "duration of time".
- duration of time means that both compounds of the invention are administered for an indicated number of consecutive days. Unless otherwise defined, the number of consecutive days does not have to commence with the start of treatment or terminate with the end of treatment, it is only required that the number of consecutive days occur at some point during the course of treatment.
- both compounds will be administered within a specified period for at least one day - in this case, the duration of time will be at least one day; suitably, during the course to treatment, both compounds will be administered within a specified period for at least 3 consecutive days - in this case, the duration of time will be at least 3 days; suitably, during the course to treatment, both compounds will be administered within a specified period for at least 5 consecutive days - in this case, the duration of time will be at least 5 days; suitably, during the course to treatment, both compounds will be administered within a specified period for at least 7 consecutive days - in this case, the duration of time will be at least 7 days; suitably, during the course to treatment, both compounds will be administered within a specified period for at least 14 consecutive days - in this case, the duration of time will be at least 14 days; suitably, during the course to treatment, both compounds will be administered within a specified period for at least 30 consecutive days - in this case, the duration of time will be at least 30 days.
- the compounds are not administered during a "specified period", they are administered sequentially.
- sequential administration and grammatical derivates thereof, as used herein is meant that one of Compound A 2 and Compound B 2 is administered once a day for two or more consecutive days and the other of Compound A 2 and Compound B 2 is subsequently administered once a day for two or more consecutive days.
- a drug holiday utilized between the sequential administration of one of Compound A 2 and Compound B 2 and the other of Compound A 2 and Compound B 2 .
- a drug holiday is a period of days after the sequential administration of one of Compound A 2 and Compound B 2 and before the administration of the other of Compound A 2 and Compound B 2 where neither Compound A 2 nor Compound B 2 is administered.
- the drug holiday will be a period of days selected from: 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days and 14 days.
- one of Compound A 2 and Compound B 2 is administered for from 1 to 30 consecutive days, followed by an optional drug holiday, followed by administration of the other of Compound A 2 and Compound B 2 for from 1 to 30 consecutive days.
- one of Compound A 2 and Compound B 2 is administered for from 1 to 21 consecutive days, followed by an optional drug holiday, followed by administration of the other of Compound A 2 and Compound B 2 for from 1 to 21 consecutive days.
- one of Compound A 2 and Compound B 2 is administered for from 1 to 14 consecutive days, followed by a drug holiday of from 1 to 14 days, followed by administration of the other of Compound A 2 and Compound B 2 for from 1 to 14 consecutive days.
- Compound B 2 is administered for from 1 to 7 consecutive days, followed by a drug holiday of from 1 to 10 days, followed by administration of the other of Compound A 2 and
- Compound B 2 for from 1 to 7 consecutive days.
- Compound B 2 will be administered first in the sequence, followed by an optional drug holiday, followed by administration of Compound A 2 .
- Compound B 2 is administered for from 3 to 21 consecutive days, followed by an optional drug holiday, followed by administration of Compound A 2 for from 3 to 21 consecutive days.
- Compound B 2 is administered for from 3 to 21 consecutive days, followed by a drug holiday of from 1 to 14 days, followed by administration of Compound A 2 for from 3 to 21 consecutive days.
- Compound B 2 is administered for from 3 to 21 consecutive days, followed by a drug holiday of from 3 to 14 days, followed by administration of
- Compound A 2 for from 3 to 21 consecutive days.
- Compound B 2 is administered for 21 consecutive days, followed by an optional drug holiday, followed by administration of Compound A 2 for 14 consecutive days.
- Compound B 2 is administered for 14 consecutive days, followed by a drug holiday of from 1 to 14 days, followed by
- Compound A 2 for 14 consecutive days is administered.
- Compound B 2 is administered for 7 consecutive days, followed by a drug holiday of from 3 to 10 days, followed by administration of Compound A 2 for 7 consecutive days.
- Compound B 2 is administered for 3 consecutive days, followed by a drug holiday of from 3 to 14 days, followed by administration of Compound A 2 for 7 consecutive days.
- Compound B 2 is administered for 3 consecutive days, followed by a drug holiday of from 3 to 10 days, followed by administration of Compound A 2 for 3 consecutive days.
- a "specified period” administration and a “sequential” administration can be followed by repeat dosing or can be followed by an alternate dosing protocol, and a drug holiday may precede the repeat dosing or alternate dosing protocol.
- the methods of the present invention may also be employed with other therapeutic methods of cancer treatment.
- Compound A 2 and Compound B 2 may be administered by any appropriate route. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), intratumorally, vaginal, and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal, and epidural). It will be appreciated that the preferred route may vary with, for example, the condition of the recipient of the combination and the cancer to be treated. It will also be appreciated that each of the agents administered may be administered by the same or different routes and that Compound A 2 and Compound B 2 may be compounded together in a pharmaceutical composition/formulation. In one embodiment, one or more components of a combination of the invention are administered intravenously.
- one or more components of a combination of the invention are administered orally. In another embodiment, one or more components of a combination of the invention are administered intratumorally. In another embodiment, one or more components of a combination of the invention are administered systemically, e.g., intravenously, and one or more other components of a combination of the invention are administered intratumorally. In any of the embodiments, e.g., in this paragraph, the components of the invention are administered as one or more pharmaceutical compositions.
- any anti-neoplastic agent that has activity versus a susceptible tumor being treated may be co-administered in the treatment of cancer in the present invention.
- examples of such agents can be found in Cancer Principles and Practice of Oncology by V.T. Devita, T.S. Lawrence, and S.A. Rosenberg (editors), 10 th edition (December 5, 2014), Lippincott Williams & Wilkins Publishers.
- a person of ordinary skill in the art would be able to discern which combinations of agents would be useful based on the particular characteristics of the drugs and the cancer involved.
- Typical anti-neoplastic agents useful in the present invention include, but are not limited to, anti-microtubule or anti-mitotic agents such as diterpenoids and vinca alkaloids; platinum coordination complexes;
- alkylating agents such as nitrogen mustards, oxazaphosphorines, alkylsulfonates, nitrosoureas, and triazenes; antibiotic agents such as actinomycins, anthracyclins, and bleomycins; topoisomerase I inhibitors such as camptothecins; topoisomerase II inhibitors such as epipodophyllotoxins; antimetabolites such as purine and pyrimidine analogues and anti-folate compounds; hormones and hormonal analogues; signal transduction pathway inhibitors; non-receptor tyrosine kinase angiogenesis inhibitors; immunotherapeutic agents; proapoptotic agents; cell cycle signalling inhibitors; proteasome inhibitors; heat shock protein inhibitors; inhibitors of cancer metabolism; and cancer gene therapy agents such as genetically modified T cells.
- a further active ingredient or ingredients for use in combination or coadministered with the present methods or combinations are anti-neoplastic agents.
- anti-neoplastic agents include, but are not limited to, chemotherapeutic agents; immuno-modulatory agents; immune-modulators; and immunostimulatory adjuvants.
- Example 1 illustrate various non-limiting aspects of this invention.
- PRMT5 is a symmetric protein arginine methyltransferase
- PRMTs Protein arginine methyltransferases
- the PRMTs are categorized into four sub-types (Type I-IV) based on the product of the enzymatic reaction (FIG. 1, Fisk JC, et al. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J Biol Chem. 2009 Apr 24;284(17): 11590-600).
- Type I-III enzymes generate ⁇ - ⁇ -monomethyl-arginine (MMA).
- the largest subtype, Type I (PRMTl, 3, 4, 6 and 8) progresses MMA to asymmetric dimethyl arginine (ADMA), while Type II generates symmetric dimethyl arginine
- PRMT5 is the primary enzyme responsible for symmetric dimethylation. PRMT5 functions in several types of complexes in the cytoplasm and the nucleus and binding partners of PRMT5 are required for substrate recognition and selectivity.
- Methylosome protein 50 is a known cofactor of PRMT5 that is required for PRMT5 binding and activity towards histones and other substrates (Ho MC, et al. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One. 2013;8(2)).
- PRMT5 methylates arginines in various cellular proteins including splicing factors, histones, transcription factors, kinases and others (FIG. 2) (Karkhanis V, et al. Trends Biochem Sci. 2011 Dec;36(12):633-41). Methylation of multiple components of the spliceosome is a key event in spliceosome assembly and the attenuation of PRMT5 activity through knockdown or gene knockout leads to disruption of cellular splicing (Bezzi M, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre- mRNA in sensing defects in the spliceosomal machinery. Genes Dev.
- PRMT5 also methylates histone arginine residues (H3R8, H2AR3 and H4R3) and these histone marks are associated with transcriptional silencing of tumor suppressor genes, such as RB and ST7 (Wang L, et al. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol. 2008 Oct;28(20):6262-77; Pal S, et al. Low levels of miR- 92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J.
- H2AR3 symmetric dimethylation of H2AR3 has been implicated in the silencing of differentiation genes in embryonic stem cells (Tee WW, et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 2010 Dec 15;24(24):2772-7). PRMT5 also plays a role in cellular signaling, through the methylation of EGFR and PI3K (Hsu JM, et al. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol.
- Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates Gl cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade. Cancer Sci. 2012 Sep; 103(9): 1640-50.). The role of PRMT5 in the methylation of proteins involved in cancer-relevant pathways is described below. PRMT5 knockout models
- PRMT5 plays a critical role in embryonic development which is demonstrated by the fact that PRMT5-null mice die between embryonic days 3.5 and 6.5 (Tee WW, et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev. 2010 Dec 15;24(24):2772-7). Early studies suggest that PRMT5 plays an important role in HSC (hematopoietic stem cells) and NPC (neural progenitor cells) development. Knockdown of PRMT5 in human cord blood CD34 + cells leads to increased erythroid differentiation (Liu F, et al.
- PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011 Feb 15; 19(2):283-94).
- PRMT5 regulates neural differentiation, cell growth and survival (Bezzi M, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 2013 Sep 1;27(17): 1903-16).
- PRMT5 protein is overexpressed in a number of cancer types, including lymphoma, glioma, breast and lung cancer and PRMT5 overexpression alone is sufficient to transform normal fibroblasts (Pal S, et al. Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J. 2007 Aug 8;26(15):3558-69.; (2004) R, et al. Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition. Hum Pathol.
- Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4. Cancer Res. 2011 Aug 15;71(16):5579-87).
- PRMT5 methylates PDCD4 altering tumor-related functions.
- Co-expression of PRMT5 and PDCD4 in an orthotopic model of breast cancer promotes tumor growth.
- High expression of PRMT5 in glioma is associated with high tumor grade and overall poor survival and PRMT5 knockdown provides a survival benefit in an orthotopic glioblastoma model (Yan F, et al. Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. Cancer Res.
- PRMT5 mantle cell lymphoma
- MCL mantle cell lymphoma
- PRMT5 is frequently overexpressed in MCL and is highly expressed in the nuclear compartment where it increases the levels of histone methylation and silences a subset of tumor suppressor genes.
- miRNAs are predicted to anneal to the 3' untranslated region of PRMT5 mRNA.
- PRMT5 has been postulated to play a role in differentiation, cell death, cell cycle progression, cell growth and proliferation. While the primary mechanism linking PRMT5 to tumorigenesis is unknown, emerging data suggest that PRMT5 contributes to regulation of gene expression (histone methylation, transcription factor binding, or promoter binding), alteration of splicing, and signal transduction. PRMT5 methylation of the transcription factor E2F 1 decreases its ability to suppress cell growth and promote apoptosis (Zheng S, et al. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell. 2013 Oct 10;52(1):37-51). PRMT5 also methylates p53 (Jansson M, et al.
- PRMT5 upregulates the p53 pathway through a splicing-related mechanism.
- PRMT5 knockout in mouse neural progenitor cells results in the alteration of cellular splicing including isoform switching of the MDM4 gene (Bezzi M, et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev. 2013 Sep 1;27(17): 1903-16). Bezzi et al.
- PRMT5 knockout cells have decreased expression of a long MDM4 isoform (resulting in a functional p53 ubiquitin ligase) and increased expression of a short isoform of MDM4 (resulting in an inactive ligase). These changes in MDM4 splicing result in the inactivation of MDM4, increasing the stability of p53 protein, and subsequently, activation of the p53 pathway and cell death. MDM4 alternative splicing was also observed in PRMT5 knockdown cancer cell lines. These data suggest PRMT5 inhibition could activate multiple nodes of the p53 pathway.
- PRMT5 is also implicated in the epithelial-mesenchymal transition (EMT).
- EMT5 binds to the transcription factor SNAIL, and serves as a critical co-repressor of E-cadherin expression; knockdown of PRMT5 results in the upregulation of E-cadherin levels (Hou Z, et al.
- the LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL- dependent transcriptional repression. Mol Cell Biol. 2008 May;28(10):3198-207).
- PRMT5 inhibitors could have broad activity in heme and solid cancers.
- PRMT5 inhibitors could have broad activity in heme and solid cancers.
- Compound C impacts several cancer related pathways ultimately leading to potent anti -cancer activity in both in vitro and in vivo models, providing a novel therapeutic mechanism for the treatment of MCL, breast and brain cancers.
- Compound C was profiled in a number of in vitro biochemical assays to characterize the potency, reversibility, selectivity, and mechanism of inhibition of PRMT5.
- the inhibitory potency of Compound C was assessed using a radioactive assay measuring 3 H transfer from SAM to a peptide derived from histone H4 identified from a histone peptide library screen. A long reaction time, 120 minutes, was used to capture any time -dependent increase in potency.
- the inhibitory potency was similar for close analogs of Compound C including Compound F, Compound B and Compound E (key differences on the left hand side of the molecule) which were used as tool compounds in some biology studies.
- PRMT5/MEP50 activity was monitored using a radioactive assay under balanced conditions (substrate concentrations at Km apparent) measuring the transfer of 3 H from SAM to protein substrate following treatment with Compound C.
- IC50 values were determined by fitting the data to a 3 -parameter dose-response equation.
- Compound C was co-crystalized with the PRMT5/MEP50 complex and sinefungin, a natural product SAM analugue (2.8 A resolution) (FIG. 5).
- the inhibitor binds in the cleft normally occupied by the substrate peptide and in close proximity to sinefungin which occupies the SAM pocket.
- the aryl ring of the tetrahydroisoquinoline appears to make a ⁇ -aryl stacking interaction with the amino group of sinefungin.
- a hydrogen bond is formed between the hydroxyl group of Compound C and the Leu437 backbone and Glu244.
- a hydrogen bond interaction is also formed between the amide of the pyrimidine ring and the backbone NH group of Phe580.
- the terminal piperidine acetamide lies on the solvent exposed surface with no obvious critical contacts. Overall, the structure supports an inhibitory mechanism that is uncompetitive with SAM and competitive with substrate.
- affinity selection mass spectrometry was used to measure the binding of Compound C to various PRMT5/MEP50 complexes. Positive binding could be detected in the binary complexes containing PRMT5/MEP50 with SAM, sinefungin or SAH and to the dead-end tertiary complexes of
- PRMT5/MEP50:H4 peptide SAH or sinefungin.
- ASMS would be unable to detect irreversibly bound Compound C
- these results are consistent with a reversible binding mechanism.
- Upon competition with 10-fold excess H4 peptide the binding of Compound C was reduced within the PRMT5/MEP50:H4 peptide: sinefungin complex.
- No binding of Compound C was detected with the PRMT5/MEP50: H4 peptide complex or with PRMT5/MEP50 alone suggesting the SAM binding pocket needs to be occupied for Compound C binding.
- Compound C was assessed in a panel of enzymes that included Type I and Type II PRMTs and lysine methyltransferases (KMTs).
- KMTs lysine methyltransferases
- PRMT9/FBX011 which is the other Type II PRMT and the only PRMT to lack the THW loop, was not included due to the lack of a functional enzyme assay.
- Compound C did not inhibit any of the 19 enzymes on the methyltransferase selectivity panel with IC50 values > 40 ⁇ resulting in > 4000-fold selectivity for PRMT5/MEP50 (FIG. 6).
- PRMT5/MEP50 over the other methyltransferases was also observed for PRMT5 tool compounds that were used in the Biology section of this document (Compound B, Compound F and Compound E).
- Compound C is a potent, selective, reversible inhibitor of the
- PRMT5/MEP50 in complex with Compound C and the ASMS binding data are consistent with a SAM uncompetitive, protein substrate competitive mechanism.
- PRMT5 is overexpressed in a number of human cancers and is implicated in multiple cancer-related pathways. There is a strong rationale for use of PRMT5 inhibitors as a therapeutic strategy in MCL, as well as breast and brain cancers. To understand the scope of PRMT5 inhibitor anti-proliferative activity, Compound C was profiled in various in vitro and in vivo tumor models using 2D and 3D growth assays.
- PRMT5 inhibition The identity of the genes and pathways impacted by PRMT5 inhibition are critical to understanding the mechanism of PRMT5 inhibitors required for indication prioritization, discovery of predictive biomarkers and the design of rational combination studies.
- Several in vitro mechanistic studies were performed to assess the biology of the response to PRMT5 inhibition.
- Arginine methylation levels of a number of PRMT5 substrates were assessed to monitor Compound C activity against PRMT5 in cells and xenograft tumors.
- RNA-sequencing of a number of cell lines was performed to evaluate the effects of Compound C on gene expression, splicing, and other molecular mechanisms and pathways that are regulated by PRMT5 activity.
- p53 pathway activity was monitored in cell lines treated with PRMT5 inhibitors.
- Compound C activity was tested in several xenograft models of MCL and breast cancer to assess the efficacy of PRMT5 inhibition in pre-clinical cancer models and evaluate molecular mechanisms and potential biomarkers of response.
- Compound C was profiled in 2D and 3D in vitro assays using broad panels of cancer lines and patient-derived tumor models.
- Compound C was evaluated in a panel of cancer cell lines in a 2D 6 day growth/death assay (FIG. 7).
- the cell lines were selected to represent tumor types where PRMT5 activity has been reported to regulate key pathways and/or cell growth and survival (such as lymphoma and MCL, glioma, breast and lung cancer lines).
- Compound C induced a cytotoxic response in a subset of diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), glioblastoma, breast and bladder cancer cell lines at concentrations above 100 nM in a 6-day growth/death assay (FIG. 8, negative Ymin-T0 values).
- DLBCL diffuse large B-cell lymphoma
- MCL mantle cell lymphoma
- glioblastoma glioblastoma
- breast and bladder cancer cell lines at concentrations above 100 nM in a 6-day growth/death assay (FIG. 8, negative Ymin-T0 values).
- MCL and DLBLC lines exhibited the strongest cytotoxic response.
- the majority of breast cancer lines had low Ymin-T0 values, suggesting that PRMT5 inhibition results in a complete growth inhibition in breast cancer models, while the rest of the cell lines exhibited a partial cytostatic response (positive Ymin-T0 values
- the anti-proliferative activity of PRMT5 inhibition was further tested in a large cancer cell line screen (240 cell lines, 10-day 2D growth assay) performed with a PRMT5 tool molecule (FIG. 9, biochemical/cellular activity comparison of Compound C and Compound B in FIG. 4).
- a PRMT5 tool molecule FIG. 9, biochemical/cellular activity comparison of Compound C and Compound B in FIG. 4.
- the tumor types with median glCso ⁇ 100 nM were acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), Hodgkin's Lymphoma (HL), multiple myeloma (MM), breast, glioma, kidney, melanoma, and ovarian cancer.
- PRMT5 is responsible for the vast majority of cellular symmetric arginine dimethylation.
- substrates were identified using an SDMA antibody recognizing a subset of cellular proteins that are symmetrically dimethylated at arginine residues.
- the identities of the proteins detected by the SDMA antibody were determined in Z 138 cellular lysates (from control and PRMT5 inhibitor treated cells) by immunoprecipitating with the SDMA antibody and mass-spectrometric analysis (MethylscanTM).
- the SDMA antibody was then used in western and ELISA assays to measure Compound C dependent inhibition of methylation.
- Z138 MCL cells Compound C glCso 2.7nM, gIC95 82 nM and glCioo 880nM, cytotoxic response in a 6-day growth/death assay, FIGS. 7-8
- Z138 MCL cells Compound C glCso 2.7nM, gIC95 82 nM and glCioo 880nM, cytotoxic response in a 6-day growth/death assay, FIGS. 7-8
- FIGS. 7-8 cytotoxic response in a 6-day growth/death assay
- SDMA IC50 values were determined in a panel of MCL cell lines. SDMA IC50 values were in a range of 0.3 to 14 nM in a panel of 5 MCL lines (FIG. 11, panel B) (sensitive Z138, Granta-519, Maver-1 and moderately resistant Mino, and Jeko-1, FIGS. 7-8) suggesting that SDMA is not a response marker, but rather a marker of PRMT5 activity that could be used to monitor PRMT5 inhibition in sensitive and resistant models.
- PRMT5 methylates histones and proteins involved in RNA processing and therefore PRMT5 inhibition is expected to have a profound effect on cellular mRNA homeostasis.
- PRMT5 inhibition was expected to have a profound effect on cellular mRNA homeostasis.
- 4 sensitive lymphoma lines (2 MCL lines-Z138 and Granta-519 and 2 DLBCL lines-DOHH2 and RL) were profiled by RNA-sequencing.
- FIG. 13 shows representative dose-response curves in the left panel and gene expression EC50 values (day 4) are summarized in the right panel. Overall, all 11 genes tested showed time- and dose -dependent expression changes and the EC50 values were in the range of 22 to 332 nM, with a median gene expression EC50 of 212 nM.
- the gene expression median EC50 value corresponds to the Compound C concentration that results in the maximal inhibition of cellular methylation in Z 138 (as measured by SDMA antibody ELISA, FIG. 11), suggesting that near complete inhibition of PRMT5 activity is required to establish changes in the gene expression program.
- splicing factor map analysis suggested that a subset of splicing factors binding sites were enriched at retained introns across all four cell lines, including hnRNPHl (directly methylated by PRMT5), hnRNPF, SRSFl and SRSF5, suggesting that PRMT5 effects on cellular splicing might be dependent on the methylation of multiple components of spliceosome machinery (Sm and hnRNP proteins).
- PRMT5 inhibition also induced isoform switching (alternative splicing) in lymphoma cell lines (FIG. 15, panel A) and 34 genes showed consistent alternative splicing changes across all cell lines tested (FIG. 15, panels B and C).
- MDM4 isoform switch It has been reported that PRMT5 knockout or knockdown results in an MDM4 isoform switch, which leads to the inactivation of MDM4 ubiquitin ligase activity toward p53 (described in the BACKGROUND section). PRMT5 inhibition resulted in the activation of the p53 pathway in 4 lymphoma lines tested in an RNA-seq experiment (GSEA). To understand whether p53 activation is associated with MDM4 isoform switching, MDM4 alternative splicing was analyzed. The MDM4 isoform switch was observed in all 4 lymphoma lines. Next, changes in MDM4 splicing were confirmed in a panel of 4 MCL lines by RT-PCR (FIG.
- PRMT5 inhibition activates wild-type p53 through the regulation of MDM4 splicing. Such a mechanism could be useful in cancer types where p53 is not frequently mutated, such as heme and pediatric malignancies.
- PRMT5 inhibition leads to significant (GSEA analysis) and relatively quick activation of the p53 pathway, which likely contributes to the growth/death phenotypes observed in cell lines treated with PRMT5 inhibitor.
- GSEA GSEA analysis
- Knockdown/rescue experiments will be used to further evaluate the role of the MDM4/p53 pathway in the PRMT5 inhibitor induced cellular responses.
- MDM4 isoform expression and p53 mutation are potential predictive biomarkers of response to PRMT5 inhibition in MCL.
- Mantle Cell Lymphoma comparison and combination activity of Compound C and ibrutinib.
- Bruton's tyrosine kinase (BTK) inhibitor ibrutinib was recently approved for use in
- the cell lines that have low Compound C glCso values are resistant to ibrutinib, while ibrutinib sensitive lines (Mino, Jeko-1) are only moderately sensitive to Compound C (FIG. 18, panel A).
- This data suggests that the activity profiles of ibrutinib and Compound C do not overlap and that ibrutinib resistant MCL models are sensitive to PRMT5 inhibition.
- the combination of PRMT5 inhibitor and ibrutinib demonstrated synergistic anti-proliferative activity in the majority of MCL lines tested (Combination Index (CI) ⁇ 1) (FIG. 18, panels B and C), suggesting that the combination of the two compounds may provide increased therapeutic benefit.
- PRMT5 inhibitors could be used in an ibrutinib resistant MCL patient population and that the combination of PRMT5 inhibitors with ibrutinib could be explored in both ibrutinib refractory and sensitive settings.
- Tumors in all the Compound C dose groups showed significant differences in weight and volume compared to vehicle samples ranging from a minimum of 40% TGI at the lowest dose group (25 mg/kg BID) to as high as >90% in the top 100 mg/kg BID dose group (no body weight loss was observed in all groups in all efficacy studies presented, FIG. 19, panel A).
- PD analysis of tumors using the SDMA western showed that all dose groups had greater than 70% reduction of the methyl mark ranging as high as >98% in the top dose groups (FIG. 19, panel B).
- efficacy of Compound C was assessed in a Maver-1 MCL xenograft model
- FIG. 20 Tumors in all the Compound C dose groups measured on day 18 showed significant differences in volume compared to vehicle samples ranging from a minimum of 50% TGI at the lowest dose group to as high as >90% in the top dose groups. PD analysis of tumors using SDMA showed that all dose groups had 80-95% reduction of the methyl mark.
- PRMT5 The strongest mechanistic link currently described between PRMT5 and cancer is in MCL.
- PRMT5 is frequently overexpressed in MCL and is highly expressed in the nuclear compartment where it increases levels of histone methylation and silences a subset of tumor suppressor genes.
- cyclin Dl the oncogene that is translocated in the vast majority of MCL patients, associates with PRMT5 and through a cdk4-dependent mechanism increases PRMT5 activity.
- PRMT5 mediates the suppression of key genes that negatively regulate DNA replication allowing for cyclin Dl -dependent neoplastic growth.
- PRMT5 knockdown inhibits cyclin Dl- dependent cell transformation causing death of tumor cells.
- Compound C inhibits growth and induces death in MCL cell lines, which are amongst the most sensitive cell lines tested to date (in a 6-day growth/death assay). In a panel of MCL lines tested, 3 cell lines had glCso ⁇ 10 nM, 2 lines exhibited glCso ⁇ 100nM and 1 cell line had glCso >1 ⁇ . Compound C effect on the downstream targets of PRMT5 and cyclin D 1 is currently being investigated to evaluate whether it contributes to the anti -growth and pro-apoptotic response.
- SDMA antibody MethylscanTM was used to evaluate PRMT5 substrates in MCL lines.
- the vast majority of SDMA containing proteins were factors that are involved in cellular splicing and R A processing (SmB, Lsm4, hnRNPHl and others), transcription (FUBP1) and translation highlighting the role of PRMT5 as an important regulator of cellular RNA homeostasis.
- the SDMA antibody was further used to evaluate PRMT5 inhibition in a panel of MCL lines where SDMA IC50 values were similar in sensitive and resistant models, suggesting that SDMA is not a marker of response but rather a marker of PRMT5 inhibition.
- MDM4 isoform expression and p53 mutation are potential predictive biomarkers of response to PRMT5 inhibition in MCL.
- the two wild-type p53 lines, Z138 and JVM-2 were the most sensitive lines (the lowest glCso values and the only two MCL lines that exhibit cytotoxicity in a 6-day growth/death assay). •
- the clinical exploration of ibrutinib drastically changed the approach to MCL treatment.
- PRMT5 inhibitors could be used in an ibrutinib resistant MCL patient population and that the combination of PRMT5 inhibitors with ibrutinib could be explored in both ibrutinib refractory and sensitive settings.
- the cell line screening data demonstrate that breast cancer cell lines are sensitive to PRMT5 inhibition and exhibit nearly complete growth inhibition in a 2D 6-day growth/death assay (low Ymin-T0, FIGS. 7-9). Additionally, the data from the colony formation assay in a panel of patient-derived (PDX) tumor models suggested that breast tumors are amongst the most sensitive tumors in the panel (based on the Compound E rel. IC50 values, FIG. 10). Thus, breast cancer cell lines were assessed in several growth/death and mechanistic studies to assess the role and the therapeutic potential of PRMT5 inhibition in breast cancer.
- PRMT5 inhibitor activity across different breast tumor subtypes
- a panel of breast cancer cell lines was profiled in a 7-day growth assay using a PRMT5 tool compound (FIG. 21).
- PRMT5 inhibition attenuates cell growth with low IC50 values across the various subtypes of breast cancer cell lines tested.
- the median IC50 value was the lowest in TNBC (triple negative breast cancer) cell lines compared to the HER2 or hormone receptor (HR) positive lines.
- FACS fluorescence activated cell sorting
- MCF-7 cells p53 wild-type
- Compound C treatment led to the accumulation of cells in Gl phase (2N) and the loss of cells from S phase of the cell cycle (>2N and ⁇ 4N) on day 2, with subsequent cell death as evidenced by the accumulation of cells in sub-Gl phase ( ⁇ 2N) on day 10.
- ZR-75-1 cells p53 wild-type
- Compound C had minor effects on cell cycle distribution where there was a decrease in Gl (2N) and an increase in >4N cell fractions on days 7 and 10.
- MDA-MB- 468 and SKBR-3 cell lines responded similarly to Compound C treatment with a decrease in Gl (2N) phase (day 7 or day 10), an increase in G2/M (4N) and >4N DNA content, which coincided with the accumulation of cells in subGl ( ⁇ 2N), indicative of cell death.
- TNBC cell lines were more sensitive to PRMT5 inhibition than Her2 and hormone receptor positive lines.
- TGI tumor growth inhibition
- PRMT5 protein is frequently overexpressed in glioblastoma tumors and high PRMT5 levels strongly correlate with both grade (grade IV) and poor survival in GBM patients (Yan F, et al. Cancer Res. 2014 Mar 15;74(6): 1752-65).
- PRMT5 knockdown attenuates the growth and survival of GBM cell lines and significantly improves survival in an orthotopic Gli36 xenograft model (Y an F, et al. Cancer Res. 2014 Mar 15;74(6): 1752- 65).
- PRMT5 also plays an important role in normal mouse brain development through the regulation of growth and differentiation of neural progenitor cells (Bezzi M, et al. Genes Dev. 2013 Sep 1;27(17): 1903-16).
- Glioblastoma cell line models were amongst the most sensitive tumor types in a soft agar colony formation assay (FIG. 10).
- 2D, 6-day growth/death CTG assay GBM cell lines had glCso values in the 40 - 22000 nM range where the response was largely cytostatic, with the exception of the SF539 cell line (FIGS. 7 and 8).
- Compound C activity was tested in a 2D, 14-day growth/death CTG assay (FIG. 26).
- the nature of the cytostatic/cytotoxic response did not change upon longer exposure to the compound and the only cell line that underwent apoptosis in response to PRMT5 inhibition was SF539.
- PRMT5 protein is frequently overexpressed in glioblastoma tumors and high
- Glioblastoma cell line models were amongst the most sensitive tumor types in a soft agar colony formation assay.
- Compound C inhibits symmetric arginine dimethylation on a variety of cellular proteins including spliceosome components, histones, transcription factors, and kinases. Therefore, PRMT5 inhibitors impact RNA homeostasis through a multitude of mechanisms including changes in transcription, splicing, and mRNA translation. ⁇ PRMT5 inhibition leads to gene expression and splicing changes ultimately
- Compound C induces an isoform switch in the p53 ubiquitin ligase MDM4, stabilizes p53 protein, and induces p53 target gene expression signaling in mantle cell and diffuse large B-cell lymphoma as well as breast and glioma cancer cell lines (the only tumor types tested so far). • Compound C inhibits proliferation in a broad range of solid and heme tumor cell lines and induces cell death in a subset of mantle cell and diffuse large B-cell lymphoma, breast, bladder, and glioma cell lines. The most potent growth inhibition was observed in mantle cell and diffuse large B-cell lymphoma cell lines.
- Compound C efficacy was tested in xenograft models of mantle cell lymphoma and breast cancer, where it significantly inhibited tumor growth. These data provide strong rationale for the use of Compound C as a therapeutic strategy in mantle cell lymphoma, diffuse large B-cell lymphoma, breast and brain cancer.
- FIG. 28 shows average survival in A20 tumor model treated with corresponding vehicles (Groups 1 and 3), Compound C (Group 6), anti-OX40 (Group 2), and a combination of Compound C and anti-OX40 (Group 11).
- FIG. 29 shows average survival in CT-26 tumor model treated with corresponding vehicles (Groups 1 and 3), Compound C (Group 6), anti-OX40 (Group 2), and a combination of Compound C and anti-OX40 (Group 11).
- Treatment of A20 xenograft tumors with the combination of anti-OX-40 antibody and Compound C resulted in moderate survival advantage, highlighting the potential synergistic interaction between two agents.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Enzymes And Modification Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17818288.7A EP3548068A1 (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
US16/465,601 US20190350931A1 (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
BR112019011350A BR112019011350A2 (en) | 2016-12-01 | 2017-11-30 | combination therapy |
CA3045243A CA3045243A1 (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
AU2017369994A AU2017369994A1 (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
KR1020197018433A KR20190090823A (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
JP2019529614A JP2020511407A (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
CN201780084564.XA CN110234342A (en) | 2016-12-01 | 2017-11-30 | Combination treatment |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662428764P | 2016-12-01 | 2016-12-01 | |
US62/428,764 | 2016-12-01 | ||
US201662433363P | 2016-12-13 | 2016-12-13 | |
US62/433,363 | 2016-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018100535A1 true WO2018100535A1 (en) | 2018-06-07 |
Family
ID=60782286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/057549 WO2018100535A1 (en) | 2016-12-01 | 2017-11-30 | Combination therapy |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP3548068A1 (en) |
JP (1) | JP2020511407A (en) |
KR (1) | KR20190090823A (en) |
CN (1) | CN110234342A (en) |
AU (1) | AU2017369994A1 (en) |
BR (1) | BR112019011350A2 (en) |
CA (1) | CA3045243A1 (en) |
WO (1) | WO2018100535A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217070A1 (en) | 2019-04-25 | 2020-10-29 | Nicholas La Thangue | Cancer therapy by modifying neoantigen expression |
WO2021225963A3 (en) * | 2020-05-04 | 2021-12-09 | Sanford Burnham Prebys Medical Discovery Institute | Methods and compositions for induction of antitumor immunity |
CN113908283A (en) * | 2021-09-30 | 2022-01-11 | 上海交通大学医学院附属新华医院 | PRMT5 inhibitor and application thereof in combination with PD-L1 antibody blocking agent in treatment of lung cancer |
EP4149483A4 (en) * | 2020-05-15 | 2024-09-11 | Fred Hutchinson Cancer Center | Compositions and methods for enhancing cancer immunotherapy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110950841A (en) * | 2019-11-22 | 2020-04-03 | 济南大学 | Synthesis and application of novel triazole compounds |
Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0054951A1 (en) | 1980-12-24 | 1982-06-30 | Chugai Seiyaku Kabushiki Kaisha | Dibenz(b,f)(1,4)oxazepine derivatives, process for preparing the same, and pharmaceutical compositions comprising the same |
WO1986001533A1 (en) | 1984-09-03 | 1986-03-13 | Celltech Limited | Production of chimeric antibodies |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US5811097A (en) | 1995-07-25 | 1998-09-22 | The Regents Of The University Of California | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
WO1998042752A1 (en) | 1997-03-21 | 1998-10-01 | Brigham And Women's Hospital Inc. | Immunotherapeutic ctla-4 binding peptides |
US5855887A (en) | 1995-07-25 | 1999-01-05 | The Regents Of The University Of California | Blockade of lymphocyte down-regulation associated with CTLA-4 signaling |
US5977318A (en) | 1991-06-27 | 1999-11-02 | Bristol Myers Squibb Company | CTLA4 receptor and uses thereof |
US6051227A (en) | 1995-07-25 | 2000-04-18 | The Regents Of The University Of California, Office Of Technology Transfer | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
WO2000037504A2 (en) | 1998-12-23 | 2000-06-29 | Pfizer Inc. | Human monoclonal antibodies to ctla-4 |
WO2001014424A2 (en) | 1999-08-24 | 2001-03-01 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
US20020039581A1 (en) | 2000-01-27 | 2002-04-04 | Carreno Beatriz M. | Antibodies against CTLA4 and uses therefor |
US20020086014A1 (en) | 1999-08-24 | 2002-07-04 | Korman Alan J. | Human CTLA-4 antibodies and their uses |
WO2003068819A1 (en) | 2001-12-22 | 2003-08-21 | 4-Antibody Ag | Method for the generation of genetically modified vertebrate precursor lymphocytes and use thereof for the production of heterologous binding proteins |
WO2003082919A2 (en) | 2002-04-03 | 2003-10-09 | Applied Research Systems Ars Holding N.V. | Ox40r binding agents |
WO2004004771A1 (en) | 2002-07-03 | 2004-01-15 | Ono Pharmaceutical Co., Ltd. | Immunopotentiating compositions |
US6682736B1 (en) | 1998-12-23 | 2004-01-27 | Abgenix, Inc. | Human monoclonal antibodies to CTLA-4 |
WO2004035607A2 (en) | 2002-10-17 | 2004-04-29 | Genmab A/S | Human monoclonal antibodies against cd20 |
WO2004056875A1 (en) | 2002-12-23 | 2004-07-08 | Wyeth | Antibodies against pd-1 and uses therefor |
WO2004072286A1 (en) | 2003-01-23 | 2004-08-26 | Ono Pharmaceutical Co., Ltd. | Substance specific to human pd-1 |
US20050053973A1 (en) | 2001-04-26 | 2005-03-10 | Avidia Research Institute | Novel proteins with targeted binding |
US20050089932A1 (en) | 2001-04-26 | 2005-04-28 | Avidia Research Institute | Novel proteins with targeted binding |
US20050164301A1 (en) | 2003-10-24 | 2005-07-28 | Avidia Research Institute | LDL receptor class A and EGF domain monomers and multimers |
WO2006063067A2 (en) | 2004-12-09 | 2006-06-15 | La Jolla Institute For Allergy And Immunology | Novel tnf receptor regulatory domain |
US7109003B2 (en) | 1998-12-23 | 2006-09-19 | Abgenix, Inc. | Methods for expressing and recovering human monoclonal antibodies to CTLA-4 |
WO2007084559A2 (en) | 2006-01-13 | 2007-07-26 | Board Of Regents, The University Of Texas System | Methods to treat disease states by influencing the signaling of ox40-receptors and high throughput screening methods for identifying substances therefor |
WO2008051424A2 (en) | 2006-10-20 | 2008-05-02 | University Of Southampton | Human immune therapies using a cd27 agonist alone or in combination with other immune modulators |
US7504101B2 (en) | 1998-02-24 | 2009-03-17 | Sisters Of Providence In Oregon | Methods for enhancing antigen-specific immune response using antibodies that bind OX-40 |
US7550140B2 (en) | 2002-06-13 | 2009-06-23 | Crucell Holland B.V. | Antibody to the human OX40 receptor |
WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
US7722868B2 (en) | 2001-11-13 | 2010-05-25 | Dana-Farber Cancer Institute, Inc. | Agents that modulate the interaction of B7-1 polypeptide with PD-L1 and methods of use thereof |
WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
US20110008369A1 (en) * | 2008-03-12 | 2011-01-13 | Finnefrock Adam C | Pd-1 binding proteins |
US7943743B2 (en) | 2005-07-01 | 2011-05-17 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (PD-L1) |
WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
US7960515B2 (en) | 2007-12-14 | 2011-06-14 | Bristol-Myers Squibb Company | Binding molecules to the human OX40 receptor |
WO2011079236A1 (en) | 2009-12-22 | 2011-06-30 | The Ohio State University Research Foundation | Compositions and methods for cancer detection and treatment |
US20110171215A1 (en) | 2008-09-12 | 2011-07-14 | Isis Innovation Limited | Pd-1 specific antibodies and uses thereof |
US20110171220A1 (en) | 2008-09-12 | 2011-07-14 | Isis Innovation Limited | Pd-1 specific antibodies and uses thereof |
US8008449B2 (en) | 2005-05-09 | 2011-08-30 | Medarex, Inc. | Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
US20110271358A1 (en) | 2008-09-26 | 2011-11-03 | Dana-Farber Cancer Institute, Inc. | Human anti-pd-1, pd-l1, and pd-l2 antibodies and uses therefor |
US20110280877A1 (en) | 2010-05-11 | 2011-11-17 | Koji Tamada | Inhibition of B7-H1/CD80 interaction and uses thereof |
WO2012027328A2 (en) | 2010-08-23 | 2012-03-01 | Board Of Regents, The University Of Texas System | Anti-ox40 antibodies and methods of using the same |
US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
WO2013019906A1 (en) | 2011-08-01 | 2013-02-07 | Genentech, Inc. | Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors |
WO2013028231A1 (en) | 2011-08-23 | 2013-02-28 | Board Of Regents, The University Of Texas System | Anti-ox40 antibodies and methods of using the same |
WO2013079174A1 (en) | 2011-11-28 | 2013-06-06 | Merck Patent Gmbh | Anti-pd-l1 antibodies and uses thereof |
US20130309250A1 (en) * | 2012-05-15 | 2013-11-21 | Bristol-Myers Squibb Company | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
WO2014055897A2 (en) | 2012-10-04 | 2014-04-10 | Dana-Farber Cancer Institute, Inc. | Human monoclonal anti-pd-l1 antibodies and methods of use |
WO2014100695A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100730A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors containing a dihydro- or tetrahydroisoquinoline and uses thereof |
WO2014100719A2 (en) * | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100764A2 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Methods of inhibiting prmt5 |
WO2014100734A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100716A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
US8779108B2 (en) | 2009-11-24 | 2014-07-15 | Medimmune, Limited | Targeted binding agents against B7-H1 |
WO2016145150A2 (en) * | 2015-03-11 | 2016-09-15 | The Broad Institute Inc. | Selective treatment of prmt5 dependent cancer |
-
2017
- 2017-11-30 EP EP17818288.7A patent/EP3548068A1/en not_active Withdrawn
- 2017-11-30 JP JP2019529614A patent/JP2020511407A/en not_active Withdrawn
- 2017-11-30 WO PCT/IB2017/057549 patent/WO2018100535A1/en unknown
- 2017-11-30 CN CN201780084564.XA patent/CN110234342A/en active Pending
- 2017-11-30 BR BR112019011350A patent/BR112019011350A2/en not_active IP Right Cessation
- 2017-11-30 KR KR1020197018433A patent/KR20190090823A/en unknown
- 2017-11-30 AU AU2017369994A patent/AU2017369994A1/en not_active Abandoned
- 2017-11-30 CA CA3045243A patent/CA3045243A1/en not_active Abandoned
Patent Citations (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0054951A1 (en) | 1980-12-24 | 1982-06-30 | Chugai Seiyaku Kabushiki Kaisha | Dibenz(b,f)(1,4)oxazepine derivatives, process for preparing the same, and pharmaceutical compositions comprising the same |
WO1986001533A1 (en) | 1984-09-03 | 1986-03-13 | Celltech Limited | Production of chimeric antibodies |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US5977318A (en) | 1991-06-27 | 1999-11-02 | Bristol Myers Squibb Company | CTLA4 receptor and uses thereof |
US5855887A (en) | 1995-07-25 | 1999-01-05 | The Regents Of The University Of California | Blockade of lymphocyte down-regulation associated with CTLA-4 signaling |
US6051227A (en) | 1995-07-25 | 2000-04-18 | The Regents Of The University Of California, Office Of Technology Transfer | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
US5811097A (en) | 1995-07-25 | 1998-09-22 | The Regents Of The University Of California | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
WO1998042752A1 (en) | 1997-03-21 | 1998-10-01 | Brigham And Women's Hospital Inc. | Immunotherapeutic ctla-4 binding peptides |
US6207156B1 (en) | 1997-03-21 | 2001-03-27 | Brigham And Women's Hospital, Inc. | Specific antibodies and antibody fragments |
US7504101B2 (en) | 1998-02-24 | 2009-03-17 | Sisters Of Providence In Oregon | Methods for enhancing antigen-specific immune response using antibodies that bind OX-40 |
US6682736B1 (en) | 1998-12-23 | 2004-01-27 | Abgenix, Inc. | Human monoclonal antibodies to CTLA-4 |
WO2000037504A2 (en) | 1998-12-23 | 2000-06-29 | Pfizer Inc. | Human monoclonal antibodies to ctla-4 |
US7132281B2 (en) | 1998-12-23 | 2006-11-07 | Amgen Fremont Inc. | Methods and host cells for producing human monoclonal antibodies to CTLA-4 |
US7109003B2 (en) | 1998-12-23 | 2006-09-19 | Abgenix, Inc. | Methods for expressing and recovering human monoclonal antibodies to CTLA-4 |
US7605238B2 (en) | 1999-08-24 | 2009-10-20 | Medarex, Inc. | Human CTLA-4 antibodies and their uses |
US20020086014A1 (en) | 1999-08-24 | 2002-07-04 | Korman Alan J. | Human CTLA-4 antibodies and their uses |
WO2001014424A2 (en) | 1999-08-24 | 2001-03-01 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
EP1212422B1 (en) | 1999-08-24 | 2007-02-21 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
US6984720B1 (en) | 1999-08-24 | 2006-01-10 | Medarex, Inc. | Human CTLA-4 antibodies |
US20050201994A1 (en) | 1999-08-24 | 2005-09-15 | Medarex, Inc. | Human CTLA-4 antibodies and their uses |
US20020039581A1 (en) | 2000-01-27 | 2002-04-04 | Carreno Beatriz M. | Antibodies against CTLA4 and uses therefor |
US20050053973A1 (en) | 2001-04-26 | 2005-03-10 | Avidia Research Institute | Novel proteins with targeted binding |
US20050089932A1 (en) | 2001-04-26 | 2005-04-28 | Avidia Research Institute | Novel proteins with targeted binding |
US7722868B2 (en) | 2001-11-13 | 2010-05-25 | Dana-Farber Cancer Institute, Inc. | Agents that modulate the interaction of B7-1 polypeptide with PD-L1 and methods of use thereof |
WO2003068819A1 (en) | 2001-12-22 | 2003-08-21 | 4-Antibody Ag | Method for the generation of genetically modified vertebrate precursor lymphocytes and use thereof for the production of heterologous binding proteins |
US7758852B2 (en) | 2002-04-03 | 2010-07-20 | Merck Serono Sa | OX40R binding agents |
WO2003082919A2 (en) | 2002-04-03 | 2003-10-09 | Applied Research Systems Ars Holding N.V. | Ox40r binding agents |
US7858765B2 (en) | 2002-04-03 | 2010-12-28 | Merck Serono Sa | OX40R binding agents |
US7550140B2 (en) | 2002-06-13 | 2009-06-23 | Crucell Holland B.V. | Antibody to the human OX40 receptor |
US8168179B2 (en) | 2002-07-03 | 2012-05-01 | Ono Pharmaceutical Co., Ltd. | Treatment method using anti-PD-L1 antibody |
US8728474B2 (en) | 2002-07-03 | 2014-05-20 | Ono Pharmaceutical Co., Ltd. | Immunopotentiative composition |
US7595048B2 (en) | 2002-07-03 | 2009-09-29 | Ono Pharmaceutical Co., Ltd. | Method for treatment of cancer by inhibiting the immunosuppressive signal induced by PD-1 |
WO2004004771A1 (en) | 2002-07-03 | 2004-01-15 | Ono Pharmaceutical Co., Ltd. | Immunopotentiating compositions |
WO2004035607A2 (en) | 2002-10-17 | 2004-04-29 | Genmab A/S | Human monoclonal antibodies against cd20 |
US7521051B2 (en) | 2002-12-23 | 2009-04-21 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-PD-1 antibodies |
US7488802B2 (en) | 2002-12-23 | 2009-02-10 | Wyeth | Antibodies against PD-1 |
US8088905B2 (en) | 2002-12-23 | 2012-01-03 | Wyeth | Nucleic acids encoding antibodies against PD-1 |
WO2004056875A1 (en) | 2002-12-23 | 2004-07-08 | Wyeth | Antibodies against pd-1 and uses therefor |
WO2004072286A1 (en) | 2003-01-23 | 2004-08-26 | Ono Pharmaceutical Co., Ltd. | Substance specific to human pd-1 |
US20050164301A1 (en) | 2003-10-24 | 2005-07-28 | Avidia Research Institute | LDL receptor class A and EGF domain monomers and multimers |
WO2006063067A2 (en) | 2004-12-09 | 2006-06-15 | La Jolla Institute For Allergy And Immunology | Novel tnf receptor regulatory domain |
US8008449B2 (en) | 2005-05-09 | 2011-08-30 | Medarex, Inc. | Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
US9084776B2 (en) | 2005-05-09 | 2015-07-21 | E.R. Squibb & Sons, L.L.C. | Methods for treating cancer using anti-PD-1 antibodies |
US7943743B2 (en) | 2005-07-01 | 2011-05-17 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (PD-L1) |
US8383796B2 (en) | 2005-07-01 | 2013-02-26 | Medarex, Inc. | Nucleic acids encoding monoclonal antibodies to programmed death ligand 1 (PD-L1) |
WO2007084559A2 (en) | 2006-01-13 | 2007-07-26 | Board Of Regents, The University Of Texas System | Methods to treat disease states by influencing the signaling of ox40-receptors and high throughput screening methods for identifying substances therefor |
WO2008051424A2 (en) | 2006-10-20 | 2008-05-02 | University Of Southampton | Human immune therapies using a cd27 agonist alone or in combination with other immune modulators |
US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
US7960515B2 (en) | 2007-12-14 | 2011-06-14 | Bristol-Myers Squibb Company | Binding molecules to the human OX40 receptor |
US20110008369A1 (en) * | 2008-03-12 | 2011-01-13 | Finnefrock Adam C | Pd-1 binding proteins |
US8168757B2 (en) | 2008-03-12 | 2012-05-01 | Merck Sharp & Dohme Corp. | PD-1 binding proteins |
WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
US20110171220A1 (en) | 2008-09-12 | 2011-07-14 | Isis Innovation Limited | Pd-1 specific antibodies and uses thereof |
US20110171215A1 (en) | 2008-09-12 | 2011-07-14 | Isis Innovation Limited | Pd-1 specific antibodies and uses thereof |
US8552154B2 (en) | 2008-09-26 | 2013-10-08 | Emory University | Anti-PD-L1 antibodies and uses therefor |
US20110271358A1 (en) | 2008-09-26 | 2011-11-03 | Dana-Farber Cancer Institute, Inc. | Human anti-pd-1, pd-l1, and pd-l2 antibodies and uses therefor |
WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
US8217149B2 (en) | 2008-12-09 | 2012-07-10 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
US8779108B2 (en) | 2009-11-24 | 2014-07-15 | Medimmune, Limited | Targeted binding agents against B7-H1 |
WO2011079236A1 (en) | 2009-12-22 | 2011-06-30 | The Ohio State University Research Foundation | Compositions and methods for cancer detection and treatment |
US20110280877A1 (en) | 2010-05-11 | 2011-11-17 | Koji Tamada | Inhibition of B7-H1/CD80 interaction and uses thereof |
WO2012027328A2 (en) | 2010-08-23 | 2012-03-01 | Board Of Regents, The University Of Texas System | Anti-ox40 antibodies and methods of using the same |
US9006399B2 (en) | 2010-08-23 | 2015-04-14 | Board Of Regents, The University Of Texas System | Anti-OX40 antibodies and methods of using the same |
WO2013019906A1 (en) | 2011-08-01 | 2013-02-07 | Genentech, Inc. | Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors |
WO2013028231A1 (en) | 2011-08-23 | 2013-02-28 | Board Of Regents, The University Of Texas System | Anti-ox40 antibodies and methods of using the same |
WO2013079174A1 (en) | 2011-11-28 | 2013-06-06 | Merck Patent Gmbh | Anti-pd-l1 antibodies and uses thereof |
US20130309250A1 (en) * | 2012-05-15 | 2013-11-21 | Bristol-Myers Squibb Company | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
US9212224B2 (en) | 2012-05-15 | 2015-12-15 | Bristol-Myers Squibb Company | Antibodies that bind PD-L1 and uses thereof |
WO2014055897A2 (en) | 2012-10-04 | 2014-04-10 | Dana-Farber Cancer Institute, Inc. | Human monoclonal anti-pd-l1 antibodies and methods of use |
WO2014100734A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100716A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100764A2 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Methods of inhibiting prmt5 |
WO2014100719A2 (en) * | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2014100730A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors containing a dihydro- or tetrahydroisoquinoline and uses thereof |
WO2014100695A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
WO2016145150A2 (en) * | 2015-03-11 | 2016-09-15 | The Broad Institute Inc. | Selective treatment of prmt5 dependent cancer |
Non-Patent Citations (68)
Title |
---|
"Cancer Principles and Practice of Oncology", 5 December 2014, LIPPINCOTT WILLIAMS & WILKINS |
"Thomas Sorrell, Organic Chemistry", 1999, UNIVERSITY SCIENCE BOOKS |
AGGARWAL P ET AL., CANCER CELL, vol. 18, no. 4, 19 October 2010 (2010-10-19), pages 329 - 40 |
AGGARWAL P ET AL.: "Nuclear cyclin D 1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase", CANCER CELL, vol. 18, no. 4, 19 October 2010 (2010-10-19), pages 329 - 40, XP055230441, DOI: doi:10.1016/j.ccr.2010.08.012 |
AGGARWAL P ET AL.: "Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase", CANCER CELL, vol. 18, no. 4, 19 October 2010 (2010-10-19), pages 329 - 40, XP055230441, DOI: doi:10.1016/j.ccr.2010.08.012 |
BEDFORD, M. T.; CLARKE, S. G.: "Protein arginine methylation in mammals: who, what, and why", MOL CELL, vol. 33, 2009, pages 1 - 13 |
BENNETT ET AL., J IMMUNOL, vol. 170, 2003, pages 711 - 8 |
BERGE ET AL.: "describe pharmaceutically acceptable salts in detail", J. PHARMACEUTICAL SCIENCES, vol. 66, 1977, pages 1 - 19 |
BEZZI M ET AL., GENES DEV., vol. 27, no. 17, 1 September 2013 (2013-09-01), pages 1903 - 16 |
BEZZI M ET AL.: "Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery", GENES DEV., vol. 27, no. 17, 1 September 2013 (2013-09-01), pages 1903 - 16 |
BIOCHEM J., vol. 446, no. 2, 1 September 2012 (2012-09-01), pages 235 - 41 |
BRUNET ET AL., IMMUNOL. REV., vol. 103, 1988, pages 21 - 36 |
BRUNET ET AL., NATURE, vol. 328, 1987, pages 267 - 270 |
BUTTE ET AL., IMMUNITY, vol. 27, 2007, pages 111 |
CAMACHO ET AL., J. CLIN. ONCOLOGY, vol. 22, no. 145, 2004 |
CARRUTHERS: "Some Modern Methods of Organic Synthesis", 1987, CAMBRIDGE UNIVERSITY PRESS |
CHOTHIA ET AL., NATURE, vol. 342, 1989, pages 877 - 883 |
DARIAVACH ET AL., EUR. J. IMMUNOL., vol. 18, 1988, pages 1901 - 1905 |
ELIEL: "Stereochemistry of Carbon Compounds", 1962, MCGRAW- HILL |
FISK JC ET AL.: "A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei", J BIOL CHEM., vol. 284, no. 17, 24 April 2009 (2009-04-24), pages 11590 - 600 |
FISK, J. C.; READ, L. K.: "Protein arginine methylation in parasitic protozoa", EUKARYOT CELL, vol. 10, 2011, pages 1013 - 1022 |
HANSEN ET AL., IMMUNOGENICS, vol. 10, 1980, pages 247 - 260 |
HO MC ET AL.: "Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity", PLOS ONE, vol. 8, no. 2, 2013 |
HODGSON ET AL., BIO/TECHNOLOGY, vol. 9, 1991, pages 421 |
HOLLIGER; HUDSON, NATURE BIOTECHNOLOGY, vol. 23, no. 9, 2005, pages 1126 - 1136 |
HOU Z ET AL.: "The LIM protein AJUBA recruits protein arginine methyltransferase 5 to mediate SNAIL-dependent transcriptional repression", MOL CELL BIOL., vol. 28, no. 10, May 2008 (2008-05-01), pages 3198 - 207 |
HSU JM ET AL.: "Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation", NAT CELL BIOL., vol. 13, no. 2, February 2011 (2011-02-01), pages 174 - 81, XP055237237, DOI: doi:10.1038/ncb2158 |
HSU JM; CHEN CT; CHOU CK; KUO HP; LI LY; LIN CY; LEE HJ; WANG YN; LIU M; LIAO HW: "Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation", NAT CELL BIOL., vol. 13, no. 2, February 2011 (2011-02-01), pages 174 - 81, XP055237237, DOI: doi:10.1038/ncb2158 |
HURWITZ ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, no. 17, 1998, pages 10067 - 10071 |
HUTLOFF ET AL., NATURE, vol. 397, 1999, pages 263 - 266 |
IBRAHIM R ET AL.: "Expression of PRMT5 in lung adenocarcinoma and its significance in epithelial-mesenchymal transition", HUM PATHOL., vol. 45, no. 7, July 2014 (2014-07-01), pages 1397 - 405, XP028856103, DOI: doi:10.1016/j.humpath.2014.02.013 |
ISHIDA ET AL., EMBO J, vol. 11, 1992, pages 3887 - 95 |
JACQUES: "Enantiomers, Racemates and Resolutions", 1981, WILEY INTERSCIENCE |
JANSSON M ET AL.: "Arginine methylation regulates the p53 response", NAT CELL BIOL., vol. 10, no. 12, December 2008 (2008-12-01), pages 1431 - 9, XP002628641, DOI: doi:10.1038/NCB1802 |
JOURNAL OF EXPERIMENTAL MEDICINE, vol. 19, no. 7, 2000, pages 1027 - 1034 |
KARKHANIS V ET AL., TRENDS BIOCHEM SCI., vol. 36, no. 12, pages 633 - 41 |
KARKHANIS V ET AL.: "Versatility of PRMT5-induced methylation in growth control and development", TRENDS BIOCHEM SCI., vol. 36, no. 12, December 2011 (2011-12-01), pages 633 - 41, XP028124154, DOI: doi:10.1016/j.tibs.2011.09.001 |
LAFAGE-POCHITALOFF ET AL., IMMUNOGENETICS, vol. 31, 1990, pages 198 - 201 |
LAROCK: "Comprehensive Organic Transformations", 1989, VCH PUBLISHERS, INC. |
LEE, Y. H.; STALLCUP, M. R.: "Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation", MOL ENDOCRINOL, vol. 23, 2009, pages 425 - 433 |
LIU F ET AL.: "JAK2V617F-mediatedphosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation", CANCER CELL, vol. 19, no. 2, 15 February 2011 (2011-02-15), pages 283 - 94 |
MOKYR ET AL., CANCER RES., vol. 58, 1998, pages 5301 - 5304 |
MOL CANCER RES., vol. 7, no. 4, April 2009 (2009-04-01), pages 557 - 69 |
NATURE IMMUNOLOGY, vol. 2, no. 3, 2001, pages 261 - 267 |
OKAZAKI ET AL., CURR. OPIN. IMMUNOL, vol. 14, 2002, pages 391779 - 82 |
PAL S ET AL.: "Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma", EMBO J., vol. 26, no. 15, 8 August 2007 (2007-08-08), pages 3558 - 69, XP008133172, DOI: doi:10.1038/sj.embojj.7601794 |
PAL S; BAIOCCHI RA; BYRD JC; GREVER MR; JACOB ST; SIF S: "Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma", EMBO J., vol. 26, no. 15, 8 August 2007 (2007-08-08), pages 3558 - 69, XP008133172, DOI: doi:10.1038/sj.embojj.7601794 |
POWERS MA ET AL., CANCER RES., vol. 71, no. 16, 15 August 2011 (2011-08-15), pages 5579 - 87 |
POWERS MA ET AL.: "Protein arginine methyltransferase 5 accelerates tumor growth by arginine methylation of the tumor suppressor programmed cell death 4", CANCER RES., vol. 71, no. 16, 15 August 2011 (2011-08-15), pages 5579 - 87 |
QUEEN ET AL., PROC. NATL ACAD SCI USA, vol. 86, 1989, pages 10029 - 10032 |
SMITH, MARCH ADVANCED ORGANIC CHEMISTRY, pages 501 - 502 |
SMITH; MARCH: "March's Advanced Organic Chemistry", 2001, JOHN WILEY & SONS, INC. |
SUBUDHI ET AL., J. CLIN. INVEST., vol. 113, 2004, pages 694 |
T. W. GREENE; P. G. M. WUTS: "Protecting Groups in Organic Synthesis", 1999, JOHN WILEY & SONS |
TAMURA ET AL., BLOOD, vol. 97, 2001, pages 1809 |
TEE WW ET AL.: "Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency", GENES DEV., vol. 24, no. 24, 15 December 2010 (2010-12-15), pages 2772 - 7, XP055404736, DOI: doi:10.1101/gad.606110 |
TEE WW; PARDO M; THEUNISSEN TW; YU L; CHOUDHARY JS; HAJKOVA P; SURANI MA: "Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency", GENES DEV., vol. 24, no. 24, 15 December 2010 (2010-12-15), pages 2772 - 7, XP055404736, DOI: doi:10.1101/gad.606110 |
WANG L ET AL.: "Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells", MOL CELL BIOL., vol. 28, no. 20, October 2008 (2008-10-01), pages 6262 - 77, XP002628643, DOI: doi:10.1128/MCB.00923-08 |
WANG L; PAL S; SIF S: "Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells", MOL CELL BIOL., vol. 28, no. 20, October 2008 (2008-10-01), pages 6262 - 77, XP002628643, DOI: doi:10.1128/MCB.00923-08 |
WANG ML ET AL., N ENGL J MED., vol. 369, no. 6, 8 August 2013 (2013-08-08), pages 507 - 16 |
WEI TY; JUAN CC; HISA JY; SU LJ; LEE YC; CHOU HY; CHEN JM; WU YC; CHIU SC; HSU CP: "Protein arginine methyltransferase 5 is a potential oncoprotein that upregulates G1 cyclins/cyclin-dependent kinases and the phosphoinositide 3-kinase/AKT signaling cascade", CANCER SCI., vol. 103, no. 9, September 2012 (2012-09-01), pages 1640 - 50 |
WILEN, TETRAHEDRON, vol. 33, 1977, pages 2725 |
WILEN: "Tables of Resolving Agents and Optical Resolutions", 1972, UNIV. OF NOTRE DAME PRESS, pages: 268 |
YAMAZAKI ET AL., J. IMMUNOL., vol. 169, 2002, pages 5538 |
YAN F ET AL., CANCER RES., vol. 74, no. 6, 15 March 2014 (2014-03-15), pages 1752 - 65 |
YAN F ET AL.: "Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma", CANCER RES., vol. 74, no. 6, 15 March 2014 (2014-03-15), pages 1752 - 65, XP055230458, DOI: doi:10.1158/0008-5472.CAN-13-0884 |
YANG, Y.; BEDFORD, M. T.: "Protein arginine methyltransferases and cancer", NAT REV CANCER, vol. 13, 2013, pages 37 - 50 |
ZHENG S ET AL.: "Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1", MOL CELL, vol. 52, no. 1, 10 October 2013 (2013-10-10), pages 37 - 51, XP028737302, DOI: doi:10.1016/j.molcel.2013.08.039 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217070A1 (en) | 2019-04-25 | 2020-10-29 | Nicholas La Thangue | Cancer therapy by modifying neoantigen expression |
WO2021225963A3 (en) * | 2020-05-04 | 2021-12-09 | Sanford Burnham Prebys Medical Discovery Institute | Methods and compositions for induction of antitumor immunity |
EP4149483A4 (en) * | 2020-05-15 | 2024-09-11 | Fred Hutchinson Cancer Center | Compositions and methods for enhancing cancer immunotherapy |
CN113908283A (en) * | 2021-09-30 | 2022-01-11 | 上海交通大学医学院附属新华医院 | PRMT5 inhibitor and application thereof in combination with PD-L1 antibody blocking agent in treatment of lung cancer |
Also Published As
Publication number | Publication date |
---|---|
AU2017369994A1 (en) | 2019-06-13 |
EP3548068A1 (en) | 2019-10-09 |
BR112019011350A2 (en) | 2019-10-22 |
JP2020511407A (en) | 2020-04-16 |
CN110234342A (en) | 2019-09-13 |
KR20190090823A (en) | 2019-08-02 |
CA3045243A1 (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018100535A1 (en) | Combination therapy | |
AU2016331190A1 (en) | Combination therapy of bromodomain inhibitors and checkpoint blockade | |
US20230094076A1 (en) | Combination therapy | |
JP2018516884A (en) | Targeted selection of patients for treatment with cortisatin derivatives | |
JP2023075286A (en) | Combination of type ii protein arginine methyltransferase inhibitor and icos binding protein to treat cancer | |
JP2023052400A (en) | Combination therapy | |
WO2023146991A1 (en) | Compounds and methods of use | |
US20190350931A1 (en) | Combination therapy | |
US20210260033A1 (en) | Combined therapy with icos binding proteins and argininemethyltransferase inhibitors | |
WO2021023609A1 (en) | Combination of a type i protein arginine methyltransferase (type i prmt) inhibitor and a methionine adenosyltransferase ii alpha (mat2a) inhibitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17818288 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3045243 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019529614 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019011350 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017369994 Country of ref document: AU Date of ref document: 20171130 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197018433 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017818288 Country of ref document: EP Effective date: 20190701 |
|
ENP | Entry into the national phase |
Ref document number: 112019011350 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190531 |