WO2019181553A1 - Surgical microscope system - Google Patents
Surgical microscope system Download PDFInfo
- Publication number
- WO2019181553A1 WO2019181553A1 PCT/JP2019/009267 JP2019009267W WO2019181553A1 WO 2019181553 A1 WO2019181553 A1 WO 2019181553A1 JP 2019009267 W JP2019009267 W JP 2019009267W WO 2019181553 A1 WO2019181553 A1 WO 2019181553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical path
- path length
- light
- tomographic image
- optical
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
Definitions
- the present technology relates to a surgical microscope system, and more particularly to a surgical microscope system in which a microscope barrel can be miniaturized.
- Such a request for a high-speed acquisition range change includes a change in the depth direction, that is, a position adjustment of the acquisition range in the depth direction.
- the depth direction at the time of tomographic image acquisition that is, the acquisition range in the optical axis direction is generally adjusted by moving the position of the microscope barrel in the optical axis direction. Therefore, it was difficult to change the acquisition range at high speed.
- Patent Document 1 it is possible to change the acquisition range of the tomographic image at a relatively high speed, but it is necessary to provide a drive unit for moving the light emission area inside the microscope barrel.
- the microscope barrel becomes large.
- the present technology has been made in view of such a situation, and enables a reduction in the size of a microscope barrel.
- a surgical microscope system includes a microscope optical system for observing a biological tissue that is an observation target, reflected light of observation light irradiated on the biological tissue, and reference light that is not irradiated on the biological tissue.
- a tomographic information acquisition optical system for acquiring tomographic information of the living tissue using the interference, and the tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light.
- a surgical microscope system includes a microscope optical system for observing a biological tissue that is an observation target, reflected light of observation light that is irradiated on the biological tissue, and reference that is not irradiated on the biological tissue
- a tomographic information acquisition optical system for acquiring tomographic information of the living tissue using interference with light, and an optical path length adjustment unit for adjusting an optical path length of the reference light in the tomographic information acquisition optical system Is provided.
- the microscope barrel can be reduced in size.
- FIG. 1 It is a figure which shows the structural example of a surgical microscope system. It is a figure which shows the structural example of an image information acquisition part. It is a figure which shows the structural example of an optical path length adjustment part. It is a figure which shows the structural example of an optical path length adjustment part. It is a figure explaining the interlock control of an OCT focus position and a tomographic image acquisition range. It is a flowchart explaining a tomographic information acquisition process. It is a figure which shows the structural example of a computer.
- FIG. 1 is a diagram illustrating a configuration example of an embodiment of a surgical microscope system to which the present technology is applied.
- the surgical microscope system 11 shown in FIG. 1 is for observing a site such as a patient's eye, which is a surgical target, before or during surgery.
- This surgical microscope system 11 has a function of acquiring tomographic information indicating a tomographic image of a site to be observed, that is, a site to be operated by, for example, an OCT (optical coherence tomography), and a microscope observation such as a bright field of the site to be observed. It has the function to acquire the front image obtained by this.
- OCT optical coherence tomography
- any observation target may be used as long as it is a living tissue, but in the following, in order to simplify the explanation, a case where the observation target living tissue is a patient's eye will be described as an example.
- the surgical microscope system 11 includes an image information acquisition unit 21, an image processing unit 22, and a display unit 23.
- the image information acquisition unit 21 includes a microscope with a tomographic image acquisition function, and acquires image information of the eye to be operated and supplies it to the image processing unit 22.
- the image information acquisition unit 21 uses, as image information, a tomographic image of the eye to be operated, that is, a tomographic image that is an image of a cross section of the eye, or a front image obtained by microscopic observation of the eye to be operated. get.
- the microscopic observation here is, for example, bright field observation, phase difference observation, fluorescence observation, etc., but the description will be continued below assuming that the eye to be operated is observed in the bright field.
- the image information acquisition unit 21 may acquire a tomographic image of a specified tomographic plane, acquire tomographic information of a wide range of eyes as volume data, and specify a position (tomographical fault) in the volume data.
- Plane) tomographic image may be generated by synthesis.
- a continuous tomographic image acquired in a certain time range may be acquired as a moving image.
- the image processing unit 22 controls the display of display information on the display unit 23 based on the image information supplied from the image information acquisition unit 21 and controls the operation of the image information acquisition unit 21.
- the image processing unit 22 includes an image recognition unit 31, an interface unit 32, a control unit 33, and a display information generation unit 34.
- the image recognition unit 31 performs image recognition processing on the image information supplied from the image information acquisition unit 21, that is, a tomographic image or a front image, and supplies the recognition result to the control unit 33. For example, in the image recognition process, a region such as a predetermined part of a surgical target eye or a surgical tool is recognized from image information.
- the interface unit 32 acquires various types of information by accepting an input operation by the user or communicating with other surgical devices, and supplies the information to the control unit 33.
- the control unit 33 controls each unit of the surgical microscope system 11 using the recognition result supplied from the image recognition unit 31 and the information supplied from the interface unit 32 as necessary.
- the display information generation unit 34 processes the image information supplied from the image information acquisition unit 21 under the control of the control unit 33 and generates display information.
- the display information may be a tomographic image or a front image itself, or may be an image in which information indicating a menu, a tomographic position, or the like is superimposed on these images.
- the display information generation unit 34 supplies the generated display information to the display unit 23.
- the display unit 23 includes a display device such as a liquid crystal display, and displays the display information supplied from the display information generation unit 34.
- the image information acquisition unit 21 is configured as shown in FIG. 2, for example.
- the image information acquiring unit 21 shown in FIG. 1 includes a light source 61, a coupler 62, an optical path length adjusting unit 63, a light receiving unit 64, and a microscope barrel 65.
- a collimating lens 71 for example, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam 71, a laser beam, and a microscope optical system 75 are provided inside the microscope barrel 65.
- the light source 61 to the microscope barrel 65 in particular, the light source 61, the coupler 62, the optical path length adjusting unit 63, the light receiving unit 64, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74 are used for surgery. It is provided as a configuration for obtaining a tomographic image of the target eye EY11. That is, the OCT is configured by the light source 61 to the objective lens 74.
- the microscope barrel 65 is used not only for obtaining a tomographic image but also for obtaining a front image of the eye EY11. That is, a microscope for observing the eye EY11 with a microscope is configured by the objective lens 74 and the microscope optical system 75 provided in the microscope barrel 65, a light source (not shown), an image sensor, and the like. It is a microscope barrel.
- the coupler 62 is made of a 2 ⁇ 2 optical fiber coupler and includes an optical fiber 81 and an optical fiber 82.
- a light source 61 is connected to one end of the optical fiber 81, and a collimator lens 71 is connected to the other end of the optical fiber 81.
- the light source 61 is a light source that outputs observation light and reference light at the time of tomographic image acquisition, and the collimator lens 71 collects light incident from the optical fiber 81 and makes it incident on the scanning unit 72 or scan.
- This is an optical lens that guides light incident from the section 72 to the optical fiber 81.
- the light receiving unit 64 is connected to one end of the optical fiber 82, and the optical path length adjusting unit 63 is connected to the other end of the optical fiber 82.
- the light receiving unit 64 includes, for example, an image sensor, and the optical path length adjusting unit 63 is an optical path length adjusting mechanism that adjusts the optical path of incident light.
- the coupler 62 when light enters one end of the optical fiber 81, a part of the light is guided to the other end of the optical fiber 81, and the remaining light is on the other end side of the optical fiber 81. To the end of the optical fiber 82.
- the direction of the other end of the optical fiber 81 and the optical fiber at the joint between the optical fiber 81 and the optical fiber 82 Branches in the direction of the end of the optical fiber 82 on the other end side of 81.
- a part of the light output from the light source 61 is light that passes through the optical fiber 81 and is applied to the eye EY11. It enters the collimating lens 71 as observation light.
- the observation light incident on the collimating lens 71 is collected by the collimating lens 71 and irradiated to the eye EY11 through the scanning unit 72, the OCT focus lens 73, and the objective lens 74.
- observation light more specifically, reflected light of observation light
- a part of the observation light passes through the inside of the optical fiber 81, and then passes through the optical fiber 82 at the coupling portion.
- the light advances to the fiber 82 and enters the light receiving unit 64.
- An optical system that guides the observation light output from the light source 61 to the light receiving unit 64 that is, an optical system including the coupler 62, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74,
- the observation optical system 91 is used when acquiring a tomographic image by OCT.
- the optical path of the observation light passing through the observation optical system 91 that is, the optical path of the observation light from the light source 61 to the light receiving unit 64 will be particularly referred to as a sample arm.
- the optical path length of the observation light is also referred to as the length of the sample arm or the optical path length of the sample arm.
- the light that travels to the optical fiber 82 instead of the observation light among the light output from the light source 61 becomes the reference light.
- This reference light is light that is used to acquire a tomographic image, but is not irradiated to the eye EY11 to be observed.
- the reference light is output from the light source 61, it passes through the inside of the optical fiber 81, proceeds to the optical fiber 82 side at the coupling portion with the optical fiber 82, and is arranged on the optical path of the reference light. Led to.
- the reference light incident on the optical path length adjusting unit 63 is reflected at the end inside the optical path length adjusting unit 63 and enters the optical fiber 82. That is, the reference light that has entered the optical path length adjustment unit 63 from the optical fiber 82 is reflected by the end inside the optical path length adjustment unit 63 and returns to the optical fiber 82.
- the reference light incident on the optical fiber 82 from the optical path length adjustment unit 63 passes through the optical fiber 82 as it is and enters the light receiving unit 64.
- An optical system that guides the reference light output from the light source 61 to the light receiving unit 64 that is, an optical system including the coupler 62 and the optical path length adjusting unit 63, is a reference optical system 92 at the time of tomographic image acquisition by OCT.
- observation optical system 91 and the reference optical system 92 constitute a tomographic information acquisition optical system 101 for acquiring a tomographic image (tomographic information) of the surgical target, that is, the eye EY11 to be observed.
- the optical path of the reference light passing through the reference optical system 92 that is, the optical path of the reference light from the light source 61 to the light receiving unit 64 will be particularly referred to as a reference arm.
- the optical path length of the reference light is also referred to as a reference arm length or a reference arm optical path length.
- observation light and reference light are incident on the light receiving unit 64.
- the light receiving unit 64 receives the observation light and the reference light incident from the optical fiber 82, performs photoelectric conversion, and outputs a signal indicating image information obtained as a result, that is, a signal indicating a tomographic image, as tomographic information.
- the image information acquisition unit 21 generates a tomographic image based on the tomographic information at a plurality of positions in the eye EY11 output from the light receiving unit 64.
- the tomographic image is an image of a cross section of the eye EY11 parallel to the optical axis of the objective lens 74.
- the surface of the eye EY11 where the length of the sample arm is equal to the length of the reference arm is the tomographic image acquisition surface, and more specifically, the tomographic image acquisition surface, more specifically, the region near the tomographic image acquisition surface is the reflective surface.
- an image of the tomographic image acquisition surface (reflection surface) of the eye EY11 is obtained as a tomographic image.
- the tomographic image acquisition plane of the eye EY11 is a plane perpendicular to the optical axis of the observation optical system 91 in the eye EY11, more specifically the optical axes of the OCT focus lens 73 and the objective lens 74.
- the tomographic image acquisition range is set as the tomographic image acquisition range, and the eye EY11
- the image information of the tomographic image acquisition range is acquired as a tomographic image (tomographic information).
- the tomographic image acquisition range is a region from which tomographic information is acquired by the eye EY11.
- the direction of the optical axis of the OCT focus lens 73 and the objective lens 74 that is, the vertical direction in FIG. 2 is also referred to as the Z direction.
- directions perpendicular to the Z direction and orthogonal to each other are also referred to as an X direction and a Y direction.
- the length in the Z direction of the tomographic image acquisition range that is, the range in the Z direction as the acquisition target of the tomographic image is a range having a predetermined length centered on the tomographic image acquisition surface.
- the interference between the observation light and the reference light is used for obtaining the tomographic image. Therefore, by adjusting the length (optical path length) of the sample arm or reference arm, it is possible to adjust the position (range) in the Z direction of the tomographic image acquisition range, that is, the position in the depth direction of the tomographic image acquisition surface. It is.
- the image information acquisition unit 21 does not adjust the optical path length of the sample arm, makes the optical path length of the reference arm variable, and adjusts it to an appropriate length so that the position in the Z direction of the tomographic image acquisition range can be arbitrarily set.
- the position can be set.
- the position adjustment in the XY direction of the tomographic image acquisition range is realized by scanning the observation light in the X direction or the Y direction by the scanning unit 72. This is because the position (range) in the XY direction where the observation light is irradiated on the eye EY11 is the position (range) in the XY direction of the tomographic image acquisition range.
- the scanning unit 72 is composed of a pair of scan mirror 111-1 and scan mirror 111-2 which are arranged so that the reflecting surfaces face each other in parallel.
- Such a scanning unit 72 functions as an OCT scanning system that scans observation light in the X and Y directions, that is, a scanner.
- the observation light from the collimator lens 71 is reflected by the scan mirror 111-1, further reflected by the scan mirror 111-2, and guided to the OCT focus lens 73.
- the scan mirror 111-1 and the scan mirror 111-2 are also simply referred to as the scan mirror 111 when it is not necessary to distinguish between them.
- the optical path of the observation light is changed by rotating the pair of scan mirrors 111, so that the observation light can be irradiated to an arbitrary position in the XY direction of the eye EY11. It can be done.
- the focusing position of the observation light in the Z direction that is, the focus position of the observation light can be adjusted by the OCT focus lens 73.
- the OCT focus lens 73 is arranged on the optical path of the observation light to constitute the observation optical system 91, but is not an optical element constituting an optical system for observing the eye EY11 in bright field. That is, the OCT focus lens 73 is not disposed on the optical path of light for observing the eye EY11 in bright field. Therefore, for example, even when tomographic information is acquired during bright field observation, the focus position of the observation light can be adjusted without affecting the bright field observation by using the OCT focus lens 73.
- the focus position of the observation light in the Z direction is particularly referred to as the OCT focus position.
- the OCT focus lens 73 is composed of a variable focus lens whose shape (lens shape) changes according to an applied voltage.
- shape of the OCT focus lens 73 changes, the refractive power of the OCT focus lens 73, that is, the focal position, changes, so that the OCT focusing position also changes.
- the OCT focus position may be adjusted by changing the position of the OCT focus lens 73 in the Z direction, or the refractive power of the OCT focus lens 73 and the change of the position in the Z direction may be adjusted. May be combined to adjust the OCT focusing position.
- a microscope optical system 75 for bright-field observation of the eye EY11 is provided inside the microscope barrel 65.
- the microscope optical system 75 includes an illumination system and an imaging optical system.
- illumination light output from a light source passes through the illumination optical system and the objective lens 74 of the microscope optical system 75.
- the illumination light reflected by the surface of the eye EY11 becomes bright field observation light, and the bright field observation light passes through the objective lens 74 and the imaging optical system of the microscope optical system 75 to an image sensor (not shown). And incident.
- the image sensor receives the bright field observation light incident from the imaging optical system and photoelectrically converts the bright field observation light, thereby capturing a front image that is a bright field image of the eye EY11.
- ⁇ Configuration example of optical path length adjustment unit> By the way, in a general microscope system equipped with an OCT, as a method of changing the position in the Z direction of the tomographic image acquisition range, that is, the range in the depth direction of OCT imaging, the entire microscope column corresponding to the microscope column 65 is used. A method for moving the lens in the Z direction and a method for moving the lens corresponding to the collimating lens 71 in the optical axis direction are employed. In any of these methods, the position of the tomographic image acquisition range in the Z direction is adjusted by adjusting at least the optical path length of the sample arm.
- the position of the tomographic image acquisition range in the Z direction can be adjusted by adjusting only the optical path length of the reference arm by the optical path length adjustment unit 63 without adjusting the optical path length of the sample arm. .
- the optical path length adjustment unit 63 for adjusting the optical path length can be disposed outside the microscope barrel 65, thereby the microscope barrel 65.
- a configuration advantageous for downsizing is realized. That is, the microscope barrel 65 can be reduced in size.
- the optical path length adjustment unit 63 is disposed on the optical path of the reference light and outside the microscope barrel 65, so that the microscope barrel 65 is downsized.
- the portion of the eye EY11 that has the same optical path length as that of the reference arm in the sample arm is used as a tomographic image acquisition surface, and a tomographic image in the tomographic image acquisition range including the tomographic image acquisition surface is captured.
- the optical path length of the reference arm may be changed in adjusting the position in the Z direction of the tomographic image acquisition range, that is, the range in the depth direction (Z direction) from which tomographic images are acquired.
- the optical path length of the reference arm is adjusted by the optical path length adjustment unit 63.
- the optical path length adjustment unit 63 can be configured as shown in FIGS. 3 and 4. 3 and 4, the same reference numerals are given to the portions corresponding to those in FIG. 2, and description thereof will be omitted as appropriate.
- the optical path length adjustment unit 63 includes a collimating lens 201, a reference mirror 202, and a driving unit 203.
- the collimating lens 201 and the reference mirror 202 are arranged on the optical path of the reference light, and in particular, the collimating lens 201 is arranged at the end portion of the optical fiber 82.
- the reference light guided by the optical fiber 82 and incident on the optical path length adjustment unit 63 is condensed by the collimator lens 201 and incident on the reference mirror 202.
- the reference light that has entered the reference mirror 202 from the collimator lens 201 is reflected by the reference mirror 202 and enters the optical fiber 82 via the collimator lens 201.
- the reference light incident on the optical fiber 82 in this way enters the light receiving unit 64 through the optical fiber 82.
- the reference mirror 202 whose arrangement position is variable is arranged on the optical path of the reference light, and the optical path length of the reference light is adjusted by changing the arrangement position of the reference mirror 202. .
- the optical path length adjusting unit 63 physically moves the reference mirror 202 disposed on the optical path of the reference light in a direction parallel to the traveling direction of the reference light, that is, in the direction indicated by the arrow A11 in the drawing.
- a drive unit 203 is provided.
- the drive unit 203 moves the reference mirror 202, the distance from the collimating lens 201 to the reference mirror 202 changes, so that the optical path length of the reference light, that is, the optical path length of the reference arm changes.
- the optical path length adjustment unit 63 includes a delay line 231, a collimator lens 232, and a reference mirror 233.
- the delay line 231, the collimating lens 232, and the reference mirror 233 are arranged on the optical path of the reference light.
- a delay line 231 is disposed at the end portion of the optical fiber 82, and a collimator lens 232 is disposed between the delay line 231 and the reference mirror 233.
- the reference light guided by the optical fiber 82 and incident on the optical path length adjusting unit 63 enters the collimator lens 232 via the delay line 231, is condensed by the collimator lens 232, and enters the reference mirror 233. .
- the reference light that has entered the reference mirror 233 from the collimator lens 232 is reflected by the reference mirror 233 and enters the optical fiber 82 via the collimator lens 232 and the delay line 231.
- the reference light incident on the optical fiber 82 in this way enters the light receiving unit 64 through the optical fiber 82.
- the delay line 231 is configured by a device called an optical delay line, and the delay line 231 can electrically control the delay of the reference light, that is, adjust the optical path length of the reference light.
- the refractive index inside the delay line 231 changes, thereby changing the optical path length of the reference light, that is, the optical path length of the reference arm.
- the optical path length of the reference arm is adjusted by the delay line 231
- the optical path length can be adjusted at a higher speed than when the reference mirror 202 is physically moved as shown in FIG.
- the optical path length of the reference arm is adjusted by combining the configuration for moving the reference mirror as shown in FIG. 3 and the configuration using the delay line as shown in FIG.
- the optical path length of the reference arm may be adjusted by other configurations. Therefore, for example, in the optical path length adjusting unit 63 shown in FIG. 4, the arrangement position of the reference mirror 233 may be variable.
- the position in the Z direction of the tomographic image acquisition range is faster than the method of moving the entire microscope barrel. Can be adjusted.
- a general microscope system equipped with OCT controls the focus position during bright-field observation with a microscope, that is, controls the OCT focus position independently of focus control during bright-field observation. Some are configured to be able to.
- a plurality of types of focus lenses corresponding to the OCT focus lens 73 are prepared, and any one of these focus lenses is selectively arranged on the optical path of the observation light, so that the OCT focus position is obtained.
- it is configured to change the above.
- the OCT focusing position is adjusted by exchanging the focus lens arranged on the sample arm.
- a fixed-shaped focus lens corresponding to the OCT focus lens 73 is moved in the optical axis direction to thereby move the OCT.
- a method for adjusting the in-focus position is also known.
- a variable focus lens is employed as the OCT focus lens 73 in order to make it possible to electrically control the focus changing mechanism.
- the lens shape of the OCT focus lens 73 can be changed by electrical control.
- the refractive power of the OCT focus lens 73 changes, and as a result, the OCT focus position changes.
- the OCT focusing lens 73 is replaced at a higher speed than when the OCT focus lens 73 is replaced or when the OCT focus lens 73 is moved in the optical axis direction.
- the focal position can be changed. Thereby, for example, the OCT focusing position can be adjusted continuously at a high speed following the surgical instrument used for the operation of the eye EY11.
- Some general microscope systems equipped with an OCT include a mechanism for adjusting a tomographic image acquisition range and a mechanism for adjusting an OCT focusing position.
- the position in which the surgeon pays attention that is, the position in the tomographic image acquisition range, and the OCT focusing position become large in the Z direction, and the operator cannot focus on the focus. That is, the tomographic image may be blurred.
- FIG. 5 it is assumed that a tomographic image is acquired by irradiating the eye EY11 with a beam BM11 as observation light.
- parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
- the vertical direction in the figure is the Z direction
- the position indicated by the arrow Q11 in the Z direction is the OCT focusing position.
- This OCT in-focus position is a position where the beam BM11 which is the observation light is most converged in the Z direction, that is, a position where the beam diameter of the beam BM11 is the smallest.
- the range indicated by the arrow Q12 is the Z direction range of the tomographic image acquisition range
- the position indicated by the arrow Q13 is the Z direction of the tomographic image acquisition range among the Z direction range of the tomographic image acquisition range.
- the position indicated by the arrow Q13 is the tomographic image acquisition plane.
- the OCT focusing position is located on the tomographic image acquisition surface.
- the OCT focusing position is located within the tomographic image acquisition range, a clear tomographic image in focus on the tomographic image acquisition surface can be obtained.
- the OCT focusing position is a position on the tomographic image acquisition plane, but the OCT focusing position is not within the tomographic image acquisition plane but is positioned within the tomographic image acquisition range. If so, a clear tomographic image can be obtained. Therefore, the OCT focusing position is not limited to the position on the tomographic image acquisition surface, and may be any position as long as it is within the tomographic image acquisition range.
- control unit 33 controls the optical path length adjustment unit 63 while the OCT focusing position is fixed, and changes the position in the Z direction of the tomographic image acquisition range.
- the OCT focusing position does not change and the tomographic image acquisition range moves in the Z direction, it is not guaranteed that the OCT focusing position is located within the tomographic image acquisition range after adjustment of the tomographic image acquisition range. .
- the OCT focusing position may be located outside the tomographic image acquisition range.
- the tomographic image obtained by the image information acquisition unit 21 may become unclear.
- the surgical microscope system 11 can obtain a focused and clear tomographic image by controlling the OCT focusing position and the tomographic image acquisition range to be adjusted in conjunction with each other. That is, it is possible to obtain a tomographic image focused on the position focused by the operator.
- the operation of the optical path length adjustment unit 63 is controlled by the control unit 33, and the optical path length of the reference arm is adjusted.
- control unit 33 grasps the optical path length of the reference arm, the position in the Z direction of the tomographic image acquisition range determined with respect to the optical path length of the reference arm, that is, the Z direction in which the tomographic image is to be acquired. It is possible to specify a range.
- the control unit 33 also controls the OCT focus lens 73, that is, adjusts the OCT focusing position.
- control unit 33 knows not only the position in the Z direction of the tomographic image acquisition range but also the OCT focusing position, the OCT focusing is always performed so that the OCT focusing position is located within the tomographic image acquisition range.
- the position and the tomographic image acquisition range can be changed in conjunction with each other.
- the control unit 33 controls the optical path length adjustment unit 63 and the OCT focus lens 73 so that the OCT focus position is always within the tomographic image acquisition range.
- the OCT focusing position may be adjusted to be a fixed position within the tomographic image acquisition range, such as a position on the tomographic image acquisition surface. That is, in this case, the controller 33 controls the adjustment of the OCT focusing position and the position of the tomographic image acquisition range so that the relative position of the OCT focusing position with respect to the tomographic image acquisition range is always the same position. become.
- a plurality of positions within the tomographic image acquisition range are sequentially set as the OCT focusing positions, and the tomographic information is acquired for each of the plurality of OCT focusing positions.
- the OCT in-focus position may be scanned in the Z direction within the tomographic image acquisition range while the position of the tomographic image acquisition range is fixed.
- the image information acquisition unit 21 performs image processing based on the tomographic information obtained for each OCT in-focus position to obtain one final tomographic information, a clear tomographic image can be obtained. Will be able to.
- a part of the light output from the light source 61 is irradiated to the eye EY11 through the optical fiber 81, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74 as observation light.
- the observation light reflected by the eye EY11 enters the light receiving unit 64 via the objective lens 74, the OCT focus lens 73, the scanning unit 72, the collimating lens 71, the optical fiber 81, and the optical fiber 82.
- the remaining part of the light output from the light source 61 branches from the optical fiber 81 to the optical fiber 82 and becomes reference light. Then, the reference light enters the optical path length adjustment unit 63 through the optical fiber 82, is reflected by the reference mirror in the optical path length adjustment unit 63, and enters the optical fiber 82 again. Further, the reference light that has entered the optical fiber 82 from the optical path length adjustment unit 63 passes through the optical fiber 82 and enters the light receiving unit 64.
- step S11 the control unit 33 determines the tomographic image acquisition range and the OCT focusing position.
- control unit 33 determines whether the OCT in-focus position is a tomographic image based on information indicating a tomographic plane designated by an operator or the like supplied from the interface unit 32 or a recognition result supplied from the image recognition unit 31.
- the tomographic image acquisition range and the OCT focusing position are determined so as to be located within the acquisition range.
- step S12 the control unit 33 controls the scanning unit 72, which is a scanning system, based on the tomographic image acquisition range determined in step S11.
- control unit 33 controls the scanning unit 72 to set the scan mirror 111 in a predetermined manner so that the observation light is irradiated to the region of the tomographic image acquisition range determined in step S11 in the eye EY11 in the XY direction (XY plane). Rotate (rotate) the angle.
- step S13 the control unit 33 controls the optical path length adjustment unit 63 based on the tomographic image acquisition range determined in step S11 to adjust the optical path length of the reference arm.
- the control unit 33 drives the drive unit so that the actual tomographic image acquisition range is the tomographic image acquisition range determined in step S11 in the Z direction.
- the reference mirror 202 is moved by controlling 203.
- the control unit 33 sets the actual tomographic image acquisition range in the Z direction to be the tomographic image acquisition range determined in step S ⁇ b> 11.
- a voltage is applied to the delay line 231 to adjust the optical path length of the reference arm.
- step S12 and step S13 the tomographic image acquisition range determined in step S11 is set as the acquisition target region of the tomographic image (tomographic information), and the tomographic information is acquired.
- step S14 the control unit 33 controls the OCT focus lens 73 based on the OCT focusing position determined in step S11.
- control unit 33 changes the refractive power of the OCT focus lens 73 by applying a voltage signal determined with respect to the OCT focus position determined in step S11 to the OCT focus lens 73.
- the observation light is condensed at the OCT in-focus position determined in step S11.
- step S15 the image information acquisition unit 21 acquires tomographic information.
- the observation light is irradiated on the tomographic image acquisition range determined in step S11 and reflected within the tomographic image acquisition range, and the reference light reflected by the optical path length adjustment unit 63 and Is incident on the light receiving portion 64.
- the light receiving unit 64 receives incident observation light and reference light, performs photoelectric conversion, and outputs the tomographic information obtained as a result.
- the image information acquisition unit 21 acquires the tomographic information output from the light receiving unit 64 in this way. Further, the image information acquisition unit 21 constructs (generates) a tomographic image and volume data from the tomographic information obtained in each of a plurality of tomographic image acquisition ranges as necessary, and the image recognition unit 31 and the display information generation unit 34. To supply.
- step S16 the control unit 33 determines whether to end the acquisition of tomographic information.
- step S16 If it is determined in step S16 that the acquisition of tomographic information has not been completed yet, the process returns to step S11, and the above-described process is repeated.
- the new region is taken as the tomographic image acquisition range and the tomographic information is obtained. That is, the tomographic information is acquired by shifting the tomographic image acquisition range.
- step S16 when it is determined in step S16 that the acquisition of tomographic information is to be terminated, each part of the surgical microscope system 11 stops the operation for acquiring the tomographic information, and the tomographic information acquiring process is ended.
- the surgical microscope system 11 determines the OCT focusing position and the tomographic image acquisition range, and acquires tomographic information according to the determination.
- a clear tomographic image can be obtained by controlling the OCT focusing position and the adjustment of the tomographic image acquisition range in conjunction with each other.
- the optical path length of the reference arm is adjusted by adjusting the optical path length of the reference arm, thereby adjusting the range (region) in the Z direction as the acquisition target of the tomographic information.
- the optical path length adjusting unit 63 can be arranged outside the microscope barrel 65. Thereby, the microscope barrel 65 can be reduced in size while adjusting the Z direction of the tomographic image acquisition range at high speed.
- the above-described series of processing can be executed by hardware or can be executed by software.
- a program constituting the software is installed in the computer.
- the computer includes, for example, a general-purpose personal computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
- FIG. 7 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- An input / output interface 505 is further connected to the bus 504.
- An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
- the input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like.
- the output unit 507 includes a display, a speaker, and the like.
- the recording unit 508 includes a hard disk, a nonvolatile memory, and the like.
- the communication unit 509 includes a network interface or the like.
- the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
- the CPU 501 loads the program recorded in the recording unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program, for example. Is performed.
- the program executed by the computer (CPU 501) can be provided by being recorded in a removable recording medium 511 as a package medium, for example.
- the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
- the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in the ROM 502 or the recording unit 508 in advance.
- the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
- the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
- each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
- the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
- the present technology can be configured as follows.
- the tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light.
- the said optical path length adjustment part is a surgery microscope system as described in (1) arrange
- the optical path length adjustment unit includes a mirror arranged on the optical path of the reference light and having a variable arrangement position, and adjusts the optical path length of the reference light by changing the arrangement position of the mirror.
- 11 surgical microscope system 21 image information acquisition unit, 33 control unit, 61 light source, 62 coupler, 63 optical path length adjustment unit, 64 light receiving unit, 65 microscope barrel, 72 scanning unit, 73 OCT focus lens, 74 objective lens , 75 microscope optical system, 101 tomographic information acquisition optical system
Landscapes
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The present technique relates to a surgical microscope system which enables a microscope tube to be made smaller. This surgical microscope system includes: a microscope optical system for observing a biological tissue which is an object to be observed; and a tomographic information acquisition optical system for acquiring tomographic information of the biological tissue using interference between the reflection of observation light that is emitted on the biological tissue and reference light that is not emitted onto the biological tissue. The tomographic information acquisition optical system has an optical path length adjustment unit that adjusts an optical path length of the reference light. This technique can be applied to a surgical microscope system.
Description
本技術は、手術顕微鏡システムに関し、特に、顕微鏡鏡筒の小型化を図ることができるようにした手術顕微鏡システムに関する。
[Technical Field] The present technology relates to a surgical microscope system, and more particularly to a surgical microscope system in which a microscope barrel can be miniaturized.
例えば、顕微鏡に搭載されたOCT(Optical Coherence Tomography)等の断層像取得装置で眼科手術中の眼の断層像を取得する場合、手技によっては術具の動きに追随する等の形で比較的高速に断層像の取得範囲を変更することが望ましいケースがある。このような高速な取得範囲変更の要求は、深さ方向の範囲の変更、つまり取得範囲の深さ方向の位置調整も含むものである。
For example, when acquiring a tomographic image of an eye during ophthalmic surgery with a tomogram acquisition device such as OCT (Optical Coherence Tomography) mounted on a microscope, depending on the technique, it may be relatively fast, following the movement of the surgical instrument. In some cases, it is desirable to change the acquisition range of tomographic images. Such a request for a high-speed acquisition range change includes a change in the depth direction, that is, a position adjustment of the acquisition range in the depth direction.
ところがOCTが搭載された顕微鏡システムでは、一般的には顕微鏡鏡筒の位置を光軸方向に移動させることにより、断層像取得時の深さ方向、つまり光軸方向の取得範囲の調整が行われているため、高速に取得範囲を変更することが困難であった。
However, in a microscope system equipped with an OCT, the depth direction at the time of tomographic image acquisition, that is, the acquisition range in the optical axis direction is generally adjusted by moving the position of the microscope barrel in the optical axis direction. Therefore, it was difficult to change the acquisition range at high speed.
これに対して、例えばOCTが搭載された顕微鏡システムとして、OCT光走査路のための光射出区域を光軸方向に移動させることにより、断層像取得時の深さ方向の取得範囲を変更する技術も提案されている(例えば、特許文献1参照)。この技術を利用すれば、顕微鏡鏡筒の位置を移動させる場合と比較して、比較的高速に断層像の取得範囲を深さ方向に変更することが可能である。
On the other hand, for example, as a microscope system equipped with an OCT, a technique for changing the acquisition range in the depth direction when acquiring a tomographic image by moving the light emission area for the OCT optical scanning path in the optical axis direction Has also been proposed (see, for example, Patent Document 1). If this technique is used, it is possible to change the tomographic image acquisition range in the depth direction at a relatively high speed as compared with the case of moving the position of the microscope barrel.
しかしながら、特許文献1に記載の技術では、比較的高速に断層像の取得範囲を変更することが可能であるが、光射出区域を動かすための駆動部を顕微鏡鏡筒の内部に設ける必要があり、顕微鏡鏡筒が大きくなってしまう。
However, in the technique described in Patent Document 1, it is possible to change the acquisition range of the tomographic image at a relatively high speed, but it is necessary to provide a drive unit for moving the light emission area inside the microscope barrel. The microscope barrel becomes large.
本技術は、このような状況に鑑みてなされたものであり、顕微鏡鏡筒の小型化を図ることができるようにするものである。
The present technology has been made in view of such a situation, and enables a reduction in the size of a microscope barrel.
本技術の一側面の手術顕微鏡システムは、観察対象である生体組織を観察するための顕微鏡光学系と、前記生体組織に照射される観察光の反射光と、前記生体組織に照射されない参照光との干渉を利用して前記生体組織の断層情報を取得するための断層情報取得光学系とを備え、前記断層情報取得光学系は、前記参照光の光路長を調整する光路長調整部を備える。
A surgical microscope system according to one aspect of the present technology includes a microscope optical system for observing a biological tissue that is an observation target, reflected light of observation light irradiated on the biological tissue, and reference light that is not irradiated on the biological tissue. A tomographic information acquisition optical system for acquiring tomographic information of the living tissue using the interference, and the tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light.
本技術の一側面においては、手術顕微鏡システムに、観察対象である生体組織を観察するための顕微鏡光学系と、前記生体組織に照射される観察光の反射光と、前記生体組織に照射されない参照光との干渉を利用して前記生体組織の断層情報を取得するための断層情報取得光学系とが設けられ、前記断層情報取得光学系に、前記参照光の光路長を調整する光路長調整部が設けられている。
In one aspect of the present technology, a surgical microscope system includes a microscope optical system for observing a biological tissue that is an observation target, reflected light of observation light that is irradiated on the biological tissue, and reference that is not irradiated on the biological tissue A tomographic information acquisition optical system for acquiring tomographic information of the living tissue using interference with light, and an optical path length adjustment unit for adjusting an optical path length of the reference light in the tomographic information acquisition optical system Is provided.
本技術の一側面によれば、顕微鏡鏡筒の小型化を図ることができる。
According to one aspect of the present technology, the microscope barrel can be reduced in size.
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
以下、図面を参照して、本技術を適用した実施の形態について説明する。
Hereinafter, embodiments to which the present technology is applied will be described with reference to the drawings.
〈第1の実施の形態〉
〈手術顕微鏡システムの構成例〉
本技術は、手術顕微鏡システムにおいて、断層情報を取得するための参照光の光路長を変更することで断層情報の深さ方向の取得範囲を変更するものである。これにより、断層情報の深さ方向の取得範囲を変更するための機構を顕微鏡鏡筒外に設けることができるようになるので、顕微鏡鏡筒の小型化を図ることができる。 <First Embodiment>
<Configuration example of surgical microscope system>
This technique changes the acquisition range in the depth direction of tomographic information by changing the optical path length of reference light for acquiring tomographic information in a surgical microscope system. As a result, a mechanism for changing the acquisition range in the depth direction of the tomographic information can be provided outside the microscope barrel, so that the microscope barrel can be reduced in size.
〈手術顕微鏡システムの構成例〉
本技術は、手術顕微鏡システムにおいて、断層情報を取得するための参照光の光路長を変更することで断層情報の深さ方向の取得範囲を変更するものである。これにより、断層情報の深さ方向の取得範囲を変更するための機構を顕微鏡鏡筒外に設けることができるようになるので、顕微鏡鏡筒の小型化を図ることができる。 <First Embodiment>
<Configuration example of surgical microscope system>
This technique changes the acquisition range in the depth direction of tomographic information by changing the optical path length of reference light for acquiring tomographic information in a surgical microscope system. As a result, a mechanism for changing the acquisition range in the depth direction of the tomographic information can be provided outside the microscope barrel, so that the microscope barrel can be reduced in size.
図1は、本技術を適用した手術顕微鏡システムの一実施の形態の構成例を示す図である。
FIG. 1 is a diagram illustrating a configuration example of an embodiment of a surgical microscope system to which the present technology is applied.
図1に示す手術顕微鏡システム11は、例えば手術対象となる患者の眼等の部位を術前や術中に観察するためのものである。
The surgical microscope system 11 shown in FIG. 1 is for observing a site such as a patient's eye, which is a surgical target, before or during surgery.
この手術顕微鏡システム11は、例えばOCT(光干渉断層計)により観察対象の部位、つまり手術対象の部位の断層像を示す断層情報を取得する機能と、観察対象の部位の明視野等の顕微鏡観察により得られる正面画像を取得する機能とを有している。
This surgical microscope system 11 has a function of acquiring tomographic information indicating a tomographic image of a site to be observed, that is, a site to be operated by, for example, an OCT (optical coherence tomography), and a microscope observation such as a bright field of the site to be observed. It has the function to acquire the front image obtained by this.
なお、観察対象は生体組織であれば、どのようなものであってもよいが、以下では説明を簡単にするため、観察対象となる生体組織が患者の眼である場合を例として説明する。
It should be noted that any observation target may be used as long as it is a living tissue, but in the following, in order to simplify the explanation, a case where the observation target living tissue is a patient's eye will be described as an example.
手術顕微鏡システム11は画像情報取得部21、画像処理部22、および表示部23を有している。
The surgical microscope system 11 includes an image information acquisition unit 21, an image processing unit 22, and a display unit 23.
画像情報取得部21は、断層像取得機能付きの顕微鏡などからなり、手術対象の眼の画像情報を取得して画像処理部22に供給する。
The image information acquisition unit 21 includes a microscope with a tomographic image acquisition function, and acquires image information of the eye to be operated and supplies it to the image processing unit 22.
具体的には、画像情報取得部21は手術対象の眼の断層像の画像、つまり眼の断面の画像である断層画像や、手術対象の眼を顕微鏡観察して得られる正面画像を画像情報として取得する。
Specifically, the image information acquisition unit 21 uses, as image information, a tomographic image of the eye to be operated, that is, a tomographic image that is an image of a cross section of the eye, or a front image obtained by microscopic observation of the eye to be operated. get.
なお、ここでいう顕微鏡観察とは、例えば明視野観察や位相差観察、蛍光観察などであるが、以下では手術対象の眼が明視野観察されるものとして説明を続ける。
The microscopic observation here is, for example, bright field observation, phase difference observation, fluorescence observation, etc., but the description will be continued below assuming that the eye to be operated is observed in the bright field.
また、画像情報取得部21では、指定された断層面の断層画像を取得してもよいし、眼の広範囲の断層情報をボリュームデータとして取得しておき、そのボリュームデータにおいて指定された位置(断層面)の断層画像を合成により生成するようにしてもよい。その他、一定時間範囲において取得した連続する断層画像を動画像として取得してもよい。
In addition, the image information acquisition unit 21 may acquire a tomographic image of a specified tomographic plane, acquire tomographic information of a wide range of eyes as volume data, and specify a position (tomographical fault) in the volume data. Plane) tomographic image may be generated by synthesis. In addition, a continuous tomographic image acquired in a certain time range may be acquired as a moving image.
画像処理部22は、画像情報取得部21から供給された画像情報に基づく表示部23での表示情報の表示を制御したり、画像情報取得部21の動作を制御したりする。
The image processing unit 22 controls the display of display information on the display unit 23 based on the image information supplied from the image information acquisition unit 21 and controls the operation of the image information acquisition unit 21.
画像処理部22は、画像認識部31、インターフェース部32、制御部33、および表示情報生成部34を有している。
The image processing unit 22 includes an image recognition unit 31, an interface unit 32, a control unit 33, and a display information generation unit 34.
画像認識部31は、画像情報取得部21から供給された画像情報、すなわち断層画像や正面画像に対して画像認識処理を行い、その認識結果を制御部33に供給する。例えば画像認識処理では、画像情報から手術対象の眼の所定の部位や術具などの領域の認識が行われる。
The image recognition unit 31 performs image recognition processing on the image information supplied from the image information acquisition unit 21, that is, a tomographic image or a front image, and supplies the recognition result to the control unit 33. For example, in the image recognition process, a region such as a predetermined part of a surgical target eye or a surgical tool is recognized from image information.
インターフェース部32は、ユーザによる入力操作を受け付けたり、他の手術機器との間で通信を行ったりすることで各種の情報を取得し、制御部33に供給する。
The interface unit 32 acquires various types of information by accepting an input operation by the user or communicating with other surgical devices, and supplies the information to the control unit 33.
制御部33は、必要に応じて、画像認識部31から供給された認識結果やインターフェース部32から供給された情報を用いて、手術顕微鏡システム11の各部を制御する。
The control unit 33 controls each unit of the surgical microscope system 11 using the recognition result supplied from the image recognition unit 31 and the information supplied from the interface unit 32 as necessary.
表示情報生成部34は、制御部33による制御に従って画像情報取得部21から供給された画像情報の加工等を行い、表示情報を生成する。
The display information generation unit 34 processes the image information supplied from the image information acquisition unit 21 under the control of the control unit 33 and generates display information.
例えば表示情報は、断層画像や正面画像そのものであってもよいし、それらの画像にメニューや断層位置等を示す情報が重畳された画像であってもよい。表示情報生成部34は、生成した表示情報を表示部23に供給する。
For example, the display information may be a tomographic image or a front image itself, or may be an image in which information indicating a menu, a tomographic position, or the like is superimposed on these images. The display information generation unit 34 supplies the generated display information to the display unit 23.
表示部23は、例えば液晶ディスプレイ等の表示装置からなり、表示情報生成部34から供給された表示情報を表示する。
The display unit 23 includes a display device such as a liquid crystal display, and displays the display information supplied from the display information generation unit 34.
〈画像情報取得部の構成例〉
続いて、図1に示した画像情報取得部21の構成例について説明する。 <Configuration example of image information acquisition unit>
Next, a configuration example of the imageinformation acquisition unit 21 illustrated in FIG. 1 will be described.
続いて、図1に示した画像情報取得部21の構成例について説明する。 <Configuration example of image information acquisition unit>
Next, a configuration example of the image
画像情報取得部21は、例えば図2に示すように構成される。
The image information acquisition unit 21 is configured as shown in FIG. 2, for example.
図2に示す画像情報取得部21は、光源61、結合器62、光路長調整部63、受光部64、および顕微鏡鏡筒65を有している。
2 includes a light source 61, a coupler 62, an optical path length adjusting unit 63, a light receiving unit 64, and a microscope barrel 65. The image information acquiring unit 21 shown in FIG.
また、顕微鏡鏡筒65の内部には、コリメートレンズ71、走査部72、OCT用フォーカスレンズ73、対物レンズ74、および顕微鏡光学系75が設けられている。
Also, inside the microscope barrel 65, a collimating lens 71, a scanning unit 72, an OCT focus lens 73, an objective lens 74, and a microscope optical system 75 are provided.
ここでは、光源61乃至顕微鏡鏡筒65、特に光源61、結合器62、光路長調整部63、受光部64、コリメートレンズ71、走査部72、OCT用フォーカスレンズ73、および対物レンズ74は、手術対象である眼EY11の断層画像を得るための構成として設けられている。すなわち、これらの光源61乃至対物レンズ74によりOCTが構成される。
Here, the light source 61 to the microscope barrel 65, in particular, the light source 61, the coupler 62, the optical path length adjusting unit 63, the light receiving unit 64, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74 are used for surgery. It is provided as a configuration for obtaining a tomographic image of the target eye EY11. That is, the OCT is configured by the light source 61 to the objective lens 74.
また、顕微鏡鏡筒65は断層画像を得るためだけでなく、眼EY11の正面画像を得るためにも用いられる。すなわち、顕微鏡鏡筒65に設けられた対物レンズ74および顕微鏡光学系75や図示せぬ光源、イメージセンサ等によって、眼EY11を顕微鏡観察するための顕微鏡が構成されており、顕微鏡鏡筒65がその顕微鏡の鏡筒となっている。
The microscope barrel 65 is used not only for obtaining a tomographic image but also for obtaining a front image of the eye EY11. That is, a microscope for observing the eye EY11 with a microscope is configured by the objective lens 74 and the microscope optical system 75 provided in the microscope barrel 65, a light source (not shown), an image sensor, and the like. It is a microscope barrel.
結合器62は、2×2の光ファイバカプラからなり、光ファイバ81および光ファイバ82を有している。
The coupler 62 is made of a 2 × 2 optical fiber coupler and includes an optical fiber 81 and an optical fiber 82.
また、光ファイバ81の一方の端には光源61が接続されており、光ファイバ81の他方の端にはコリメートレンズ71が接続されている。
Further, a light source 61 is connected to one end of the optical fiber 81, and a collimator lens 71 is connected to the other end of the optical fiber 81.
光源61は、断層像取得時に観察光および参照光となる光を出力する光源であり、コリメートレンズ71は、光ファイバ81から入射した光を集光して走査部72へと入射させたり、走査部72から入射した光を光ファイバ81へと導いたりする光学レンズである。
The light source 61 is a light source that outputs observation light and reference light at the time of tomographic image acquisition, and the collimator lens 71 collects light incident from the optical fiber 81 and makes it incident on the scanning unit 72 or scan. This is an optical lens that guides light incident from the section 72 to the optical fiber 81.
これに対して、光ファイバ82の一方の端には受光部64が接続されており、光ファイバ82の他方の端には光路長調整部63が接続されている。
In contrast, the light receiving unit 64 is connected to one end of the optical fiber 82, and the optical path length adjusting unit 63 is connected to the other end of the optical fiber 82.
受光部64は、例えばイメージセンサなどからなり、光路長調整部63は、入射した光の光路を調整する光路長調整機構である。
The light receiving unit 64 includes, for example, an image sensor, and the optical path length adjusting unit 63 is an optical path length adjusting mechanism that adjusts the optical path of incident light.
結合器62では、光ファイバ81の一方の端に光が入射すると、その光のうちの一部が光ファイバ81の他方の端へと導かれ、残りの光が光ファイバ81の他方の端側にある、光ファイバ82の端へと導かれる。
In the coupler 62, when light enters one end of the optical fiber 81, a part of the light is guided to the other end of the optical fiber 81, and the remaining light is on the other end side of the optical fiber 81. To the end of the optical fiber 82.
すなわち、光ファイバ81の一方の端に入射した光は、光ファイバ81内部を進んだ後、光ファイバ81と光ファイバ82の結合部分において、光ファイバ81の他方の端の方向、およびその光ファイバ81の他方の端側にある光ファイバ82の端の方向へと分岐する。
That is, after the light incident on one end of the optical fiber 81 travels through the optical fiber 81, the direction of the other end of the optical fiber 81 and the optical fiber at the joint between the optical fiber 81 and the optical fiber 82 Branches in the direction of the end of the optical fiber 82 on the other end side of 81.
同様に、光ファイバ82の一方の端に光が入射すると、その光のうちの一部が光ファイバ82の他方の端へと導かれ、残りの光が光ファイバ82の他方の端側にある、光ファイバ81の端へと導かれる。
Similarly, when light is incident on one end of the optical fiber 82, a part of the light is guided to the other end of the optical fiber 82, and the remaining light is on the other end side of the optical fiber 82. To the end of the optical fiber 81.
したがって、例えば眼EY11の所定の面の断層像、すなわち断層情報を得ようとする場合、光源61から出力された光の一部は、光ファイバ81を通り、眼EY11に照射される光である観察光となってコリメートレンズ71へと入射する。
Therefore, for example, when obtaining a tomographic image of a predetermined surface of the eye EY11, that is, tomographic information, a part of the light output from the light source 61 is light that passes through the optical fiber 81 and is applied to the eye EY11. It enters the collimating lens 71 as observation light.
そして、コリメートレンズ71へと入射した観察光は、コリメートレンズ71により集光され、走査部72、OCT用フォーカスレンズ73、および対物レンズ74を介して眼EY11に照射される。
Then, the observation light incident on the collimating lens 71 is collected by the collimating lens 71 and irradiated to the eye EY11 through the scanning unit 72, the OCT focus lens 73, and the objective lens 74.
すると、眼EY11に照射された観察光の一部は、眼EY11の反射面となる部位で反射され、対物レンズ74、OCT用フォーカスレンズ73、走査部72、およびコリメートレンズ71を介して光ファイバ81へと導かれる。
Then, a part of the observation light irradiated to the eye EY11 is reflected by a portion that becomes a reflection surface of the eye EY11, and the optical fiber is passed through the objective lens 74, the OCT focus lens 73, the scanning unit 72, and the collimating lens 71. 81.
コリメートレンズ71から光ファイバ81へと観察光、より詳細には観察光の反射光が入射すると、その観察光の一部は光ファイバ81内部を通った後、光ファイバ82との結合部分において光ファイバ82へと進み、受光部64へと入射する。
When observation light, more specifically, reflected light of observation light, enters the optical fiber 81 from the collimator lens 71, a part of the observation light passes through the inside of the optical fiber 81, and then passes through the optical fiber 82 at the coupling portion. The light advances to the fiber 82 and enters the light receiving unit 64.
このような光源61から出力された観察光を受光部64へと導く光学系、すなわち結合器62、コリメートレンズ71、走査部72、OCT用フォーカスレンズ73、および対物レンズ74からなる光学系が、OCTによる断層像取得時の観察光学系91とされる。
An optical system that guides the observation light output from the light source 61 to the light receiving unit 64, that is, an optical system including the coupler 62, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74, The observation optical system 91 is used when acquiring a tomographic image by OCT.
以下では、観察光学系91を通る観察光の光路、すなわち光源61から受光部64までの観察光の光路を、特にサンプルアームとも称することとする。また、以下では、観察光の光路長を、サンプルアームの長さや、サンプルアームの光路長とも称することとする。
Hereinafter, the optical path of the observation light passing through the observation optical system 91, that is, the optical path of the observation light from the light source 61 to the light receiving unit 64 will be particularly referred to as a sample arm. Hereinafter, the optical path length of the observation light is also referred to as the length of the sample arm or the optical path length of the sample arm.
また、断層像取得時には、光源61から出力された光のうち、観察光とはならずに光ファイバ82へと進む光が参照光となる。この参照光は、断層像の取得に利用される光であるが、観察対象となる眼EY11には照射されない光である。
Further, at the time of acquiring a tomographic image, the light that travels to the optical fiber 82 instead of the observation light among the light output from the light source 61 becomes the reference light. This reference light is light that is used to acquire a tomographic image, but is not irradiated to the eye EY11 to be observed.
すなわち、参照光は光源61から出力された後、光ファイバ81内部を通り、光ファイバ82との結合部分において光ファイバ82側へと進み、参照光の光路上に配置された光路長調整部63へと導かれる。
That is, after the reference light is output from the light source 61, it passes through the inside of the optical fiber 81, proceeds to the optical fiber 82 side at the coupling portion with the optical fiber 82, and is arranged on the optical path of the reference light. Led to.
さらに光路長調整部63に入射した参照光は、光路長調整部63内部の端で反射され、光ファイバ82へと入射する。つまり、光ファイバ82から光路長調整部63へと入射した参照光は、光路長調整部63内部の端で反射されて光ファイバ82へと戻ってくる。
Further, the reference light incident on the optical path length adjusting unit 63 is reflected at the end inside the optical path length adjusting unit 63 and enters the optical fiber 82. That is, the reference light that has entered the optical path length adjustment unit 63 from the optical fiber 82 is reflected by the end inside the optical path length adjustment unit 63 and returns to the optical fiber 82.
そして、光路長調整部63から光ファイバ82へと入射した参照光は、そのまま光ファイバ82内部を通り、受光部64へと入射する。
The reference light incident on the optical fiber 82 from the optical path length adjustment unit 63 passes through the optical fiber 82 as it is and enters the light receiving unit 64.
このような光源61から出力された参照光を受光部64へと導く光学系、すなわち結合器62および光路長調整部63からなる光学系が、OCTによる断層像取得時の参照光学系92とされる。
An optical system that guides the reference light output from the light source 61 to the light receiving unit 64, that is, an optical system including the coupler 62 and the optical path length adjusting unit 63, is a reference optical system 92 at the time of tomographic image acquisition by OCT. The
また、観察光学系91と参照光学系92によって、手術対象、つまり観察対象の眼EY11の断層像(断層情報)を取得するための断層情報取得光学系101が構成されている。
Also, the observation optical system 91 and the reference optical system 92 constitute a tomographic information acquisition optical system 101 for acquiring a tomographic image (tomographic information) of the surgical target, that is, the eye EY11 to be observed.
以下では、参照光学系92を通る参照光の光路、すなわち光源61から受光部64までの参照光の光路を、特にリファレンスアームとも称することとする。また、以下では、参照光の光路長を、リファレンスアームの長さや、リファレンスアームの光路長とも称することとする。
Hereinafter, the optical path of the reference light passing through the reference optical system 92, that is, the optical path of the reference light from the light source 61 to the light receiving unit 64 will be particularly referred to as a reference arm. Hereinafter, the optical path length of the reference light is also referred to as a reference arm length or a reference arm optical path length.
断層像取得時には、観察光と参照光が受光部64に入射する。受光部64は、光ファイバ82から入射した観察光および参照光を受光して光電変換し、その結果得られた画像情報を示す信号、すなわち断層像を示す信号を断層情報として出力する。画像情報取得部21は、受光部64から出力された眼EY11における複数の各位置の断層情報に基づいて、断層画像を生成する。例えば断層画像は、対物レンズ74の光軸と平行な眼EY11の断面の画像である。
When acquiring a tomographic image, observation light and reference light are incident on the light receiving unit 64. The light receiving unit 64 receives the observation light and the reference light incident from the optical fiber 82, performs photoelectric conversion, and outputs a signal indicating image information obtained as a result, that is, a signal indicating a tomographic image, as tomographic information. The image information acquisition unit 21 generates a tomographic image based on the tomographic information at a plurality of positions in the eye EY11 output from the light receiving unit 64. For example, the tomographic image is an image of a cross section of the eye EY11 parallel to the optical axis of the objective lens 74.
画像情報取得部21においては、観察光と参照光の干渉が利用されて断層像が取得されるようになされている。そのため、サンプルアームの長さが、リファレンスアームの長さと等しくなる眼EY11の面が断層像取得面とされ、その断層像取得面、より詳細には断層像取得面近傍の部位が反射面となるときに、眼EY11の断層像取得面(反射面)の像が断層像として得られることになる。ここで、眼EY11の断層像取得面は、眼EY11における観察光学系91の光軸、より詳細にはOCT用フォーカスレンズ73や対物レンズ74の光軸と垂直な平面である。
In the image information acquisition unit 21, a tomographic image is acquired using interference between the observation light and the reference light. Therefore, the surface of the eye EY11 where the length of the sample arm is equal to the length of the reference arm is the tomographic image acquisition surface, and more specifically, the tomographic image acquisition surface, more specifically, the region near the tomographic image acquisition surface is the reflective surface. Sometimes, an image of the tomographic image acquisition surface (reflection surface) of the eye EY11 is obtained as a tomographic image. Here, the tomographic image acquisition plane of the eye EY11 is a plane perpendicular to the optical axis of the observation optical system 91 in the eye EY11, more specifically the optical axes of the OCT focus lens 73 and the objective lens 74.
具体的には断層像取得時には、観察光が照射される、断層像取得面を含むその断層像取得面近傍の3次元の空間、つまり3次元の領域が断層像取得範囲とされて、眼EY11における断層像取得範囲の画像情報が断層像(断層情報)として取得されることになる。換言すれば、断層像取得範囲は眼EY11における断層情報の取得対象となる領域である。
Specifically, at the time of tomographic image acquisition, a three-dimensional space near the tomographic image acquisition surface including the tomographic image acquisition surface, that is, a three-dimensional region irradiated with the observation light is set as the tomographic image acquisition range, and the eye EY11 The image information of the tomographic image acquisition range is acquired as a tomographic image (tomographic information). In other words, the tomographic image acquisition range is a region from which tomographic information is acquired by the eye EY11.
なお、以下、OCT用フォーカスレンズ73や対物レンズ74の光軸の方向、すなわち図2における上下方向をZ方向とも称することとする。また、Z方向と垂直な、互いに直交する方向をX方向およびY方向とも称することとする。
Hereinafter, the direction of the optical axis of the OCT focus lens 73 and the objective lens 74, that is, the vertical direction in FIG. 2 is also referred to as the Z direction. In addition, directions perpendicular to the Z direction and orthogonal to each other are also referred to as an X direction and a Y direction.
例えば断層像取得範囲のZ方向の長さ、つまり断層像の取得対象となるZ方向の範囲は、断層像取得面を中心とする所定の長さの範囲とされる。
For example, the length in the Z direction of the tomographic image acquisition range, that is, the range in the Z direction as the acquisition target of the tomographic image is a range having a predetermined length centered on the tomographic image acquisition surface.
上述したように断層像の取得には観察光と参照光の干渉が利用される。そのため、サンプルアームやリファレンスアームの長さ(光路長)を調整することで、断層像取得範囲のZ方向の位置(範囲)、つまり断層像取得面の深さ方向の位置を調整することが可能である。
As described above, the interference between the observation light and the reference light is used for obtaining the tomographic image. Therefore, by adjusting the length (optical path length) of the sample arm or reference arm, it is possible to adjust the position (range) in the Z direction of the tomographic image acquisition range, that is, the position in the depth direction of the tomographic image acquisition surface. It is.
画像情報取得部21では、サンプルアームの光路長の調整は行わずに、リファレンスアームの光路長を可変とし、適切な長さに調整することで、断層像取得範囲のZ方向の位置を任意の位置とすることができるようになされている。
The image information acquisition unit 21 does not adjust the optical path length of the sample arm, makes the optical path length of the reference arm variable, and adjusts it to an appropriate length so that the position in the Z direction of the tomographic image acquisition range can be arbitrarily set. The position can be set.
これに対して断層像取得範囲のXY方向の位置調整は、走査部72により観察光をX方向やY方向に走査することで実現される。これは、眼EY11における観察光が照射されるXY方向の位置(範囲)が、断層像取得範囲のXY方向の位置(範囲)となるからである。
In contrast, the position adjustment in the XY direction of the tomographic image acquisition range is realized by scanning the observation light in the X direction or the Y direction by the scanning unit 72. This is because the position (range) in the XY direction where the observation light is irradiated on the eye EY11 is the position (range) in the XY direction of the tomographic image acquisition range.
この例では、走査部72は反射面が互いに平行に対向するように配置された、一対のスキャンミラー111-1およびスキャンミラー111-2から構成されている。このような走査部72は、観察光をX方向やY方向へと走査するOCTの走査系、つまりスキャナとして機能する。
In this example, the scanning unit 72 is composed of a pair of scan mirror 111-1 and scan mirror 111-2 which are arranged so that the reflecting surfaces face each other in parallel. Such a scanning unit 72 functions as an OCT scanning system that scans observation light in the X and Y directions, that is, a scanner.
例えばコリメートレンズ71からの観察光は、スキャンミラー111-1で反射された後、さらにスキャンミラー111-2でも反射され、OCT用フォーカスレンズ73へと導かれる。なお、以下、スキャンミラー111-1およびスキャンミラー111-2を特に区別する必要のない場合、単にスキャンミラー111とも称することとする。
For example, the observation light from the collimator lens 71 is reflected by the scan mirror 111-1, further reflected by the scan mirror 111-2, and guided to the OCT focus lens 73. Hereinafter, the scan mirror 111-1 and the scan mirror 111-2 are also simply referred to as the scan mirror 111 when it is not necessary to distinguish between them.
断層像取得範囲のXY方向の位置調整時には、対となるスキャンミラー111を回転させることで観察光の光路が変更され、これにより眼EY11におけるXY方向の任意の位置に観察光を照射させることができるようになっている。
When adjusting the position of the tomographic image acquisition range in the X and Y directions, the optical path of the observation light is changed by rotating the pair of scan mirrors 111, so that the observation light can be irradiated to an arbitrary position in the XY direction of the eye EY11. It can be done.
また、観察光のZ方向における集光位置(フォーカス位置)、つまり観察光の合焦位置は、OCT用フォーカスレンズ73により調整することが可能である。
Further, the focusing position of the observation light in the Z direction, that is, the focus position of the observation light can be adjusted by the OCT focus lens 73.
OCT用フォーカスレンズ73は、観察光の光路上に配置されて観察光学系91を構成しているが、眼EY11を明視野観察するための光学系を構成する光学素子ではない。つまり、OCT用フォーカスレンズ73は、眼EY11を明視野観察するための光の光路上には配置されていない。そのため、例えば明視野観察中に断層情報を取得する場合においても、OCT用フォーカスレンズ73を用いれば、明視野観察に影響を与えることなく観察光の合焦位置を調整することができる。
The OCT focus lens 73 is arranged on the optical path of the observation light to constitute the observation optical system 91, but is not an optical element constituting an optical system for observing the eye EY11 in bright field. That is, the OCT focus lens 73 is not disposed on the optical path of light for observing the eye EY11 in bright field. Therefore, for example, even when tomographic information is acquired during bright field observation, the focus position of the observation light can be adjusted without affecting the bright field observation by using the OCT focus lens 73.
なお、以下ではZ方向における観察光の合焦位置を、特にOCT合焦位置とも称することとする。
In the following, the focus position of the observation light in the Z direction is particularly referred to as the OCT focus position.
例えばOCT用フォーカスレンズ73は、印加された電圧に応じて形状(レンズ形状)が変化する可変焦点レンズから構成される。OCT用フォーカスレンズ73の形状が変化すると、そのOCT用フォーカスレンズ73の屈折力、つまり焦点位置が変化するので、これによりOCT合焦位置も変化することになる。
For example, the OCT focus lens 73 is composed of a variable focus lens whose shape (lens shape) changes according to an applied voltage. When the shape of the OCT focus lens 73 changes, the refractive power of the OCT focus lens 73, that is, the focal position, changes, so that the OCT focusing position also changes.
なお、ここではOCT用フォーカスレンズ73の屈折力を変化させることでOCT合焦位置を調整する例について説明する。しかし、その他、OCT用フォーカスレンズ73のZ方向の位置を変化させることでOCT合焦位置を調整するようにしてもよいし、OCT用フォーカスレンズ73の屈折力の変化とZ方向の位置の変化を組み合わせてOCT合焦位置を調整するようにしてもよい。
Here, an example in which the OCT focusing position is adjusted by changing the refractive power of the OCT focus lens 73 will be described. However, the OCT focus position may be adjusted by changing the position of the OCT focus lens 73 in the Z direction, or the refractive power of the OCT focus lens 73 and the change of the position in the Z direction may be adjusted. May be combined to adjust the OCT focusing position.
さらに、顕微鏡鏡筒65内部には、眼EY11を明視野観察するための顕微鏡光学系75が設けられている。
Furthermore, a microscope optical system 75 for bright-field observation of the eye EY11 is provided inside the microscope barrel 65.
例えば顕微鏡光学系75は、照明学系と結像光学系からなり、眼EY11の正面画像取得時には、図示せぬ光源から出力された照明光が顕微鏡光学系75の照明光学系および対物レンズ74を介して、観察対象の眼EY11に照射される。そして、眼EY11の表面で反射した照明光が明視野観察光となって、その明視野観察光が対物レンズ74、および顕微鏡光学系75の結像光学系を介して、図示せぬイメージセンサへと入射する。
For example, the microscope optical system 75 includes an illumination system and an imaging optical system. When acquiring a front image of the eye EY11, illumination light output from a light source (not shown) passes through the illumination optical system and the objective lens 74 of the microscope optical system 75. Through the eye EY11 to be observed. The illumination light reflected by the surface of the eye EY11 becomes bright field observation light, and the bright field observation light passes through the objective lens 74 and the imaging optical system of the microscope optical system 75 to an image sensor (not shown). And incident.
イメージセンサは、結像光学系から入射した明視野観察光を受光して光電変換することで、眼EY11の明視野像である正面画像を撮像する。
The image sensor receives the bright field observation light incident from the imaging optical system and photoelectrically converts the bright field observation light, thereby capturing a front image that is a bright field image of the eye EY11.
〈光路長調整部の構成例〉
ところで、OCTが搭載された一般的な顕微鏡システムでは、断層像取得範囲のZ方向の位置、つまりOCT撮像の深さ方向の範囲を変更する方法として、顕微鏡鏡筒65に対応する顕微鏡鏡筒全体をZ方向に移動させる方法や、コリメートレンズ71に対応するレンズを光軸方向に移動させる方法が採用されている。これらの方法は、何れも少なくともサンプルアームの光路長を調整することで、断層像取得範囲のZ方向の位置を調整するものである。 <Configuration example of optical path length adjustment unit>
By the way, in a general microscope system equipped with an OCT, as a method of changing the position in the Z direction of the tomographic image acquisition range, that is, the range in the depth direction of OCT imaging, the entire microscope column corresponding to themicroscope column 65 is used. A method for moving the lens in the Z direction and a method for moving the lens corresponding to the collimating lens 71 in the optical axis direction are employed. In any of these methods, the position of the tomographic image acquisition range in the Z direction is adjusted by adjusting at least the optical path length of the sample arm.
ところで、OCTが搭載された一般的な顕微鏡システムでは、断層像取得範囲のZ方向の位置、つまりOCT撮像の深さ方向の範囲を変更する方法として、顕微鏡鏡筒65に対応する顕微鏡鏡筒全体をZ方向に移動させる方法や、コリメートレンズ71に対応するレンズを光軸方向に移動させる方法が採用されている。これらの方法は、何れも少なくともサンプルアームの光路長を調整することで、断層像取得範囲のZ方向の位置を調整するものである。 <Configuration example of optical path length adjustment unit>
By the way, in a general microscope system equipped with an OCT, as a method of changing the position in the Z direction of the tomographic image acquisition range, that is, the range in the depth direction of OCT imaging, the entire microscope column corresponding to the
しかしながら顕微鏡鏡筒全体を移動させる方法では、顕微鏡鏡筒が重いため、顕微鏡鏡筒を高速に移動させることは困難であり、断層像取得範囲のZ方向の位置を高速に変更することができない。
However, in the method of moving the entire microscope barrel, since the microscope barrel is heavy, it is difficult to move the microscope barrel at high speed, and the position of the tomographic image acquisition range in the Z direction cannot be changed at high speed.
これに対して、コリメートレンズ71に対応するレンズを光軸方向に移動させる方法では、そのレンズをZ方向に移動させる駆動部が必要となるが、その駆動部を顕微鏡鏡筒内部に設けなければならないため、顕微鏡鏡筒の小型化に不利である。
On the other hand, in the method of moving the lens corresponding to the collimating lens 71 in the optical axis direction, a driving unit that moves the lens in the Z direction is required. However, if the driving unit is not provided inside the microscope barrel, This is disadvantageous in reducing the size of the microscope barrel.
そこで、本技術では、サンプルアームの光路長の調整は行わずに、光路長調整部63によりリファレンスアームの光路長のみを調整することで断層像取得範囲のZ方向の位置を調整できるようにした。
Therefore, in the present technology, the position of the tomographic image acquisition range in the Z direction can be adjusted by adjusting only the optical path length of the reference arm by the optical path length adjustment unit 63 without adjusting the optical path length of the sample arm. .
本技術では、リファレンスアームの光路長のみを調整するようにしたので、光路長調整のための光路長調整部63を顕微鏡鏡筒65外部に配置することが可能であり、これにより顕微鏡鏡筒65の小型化に有利な構成が実現されている。すなわち、顕微鏡鏡筒65の小型化を図ることができる。特に、図2に示す例では、光路長調整部63は参照光の光路上で、かつ顕微鏡鏡筒65の外部に配置されており、顕微鏡鏡筒65の小型化が実現されている。
In the present technology, since only the optical path length of the reference arm is adjusted, the optical path length adjustment unit 63 for adjusting the optical path length can be disposed outside the microscope barrel 65, thereby the microscope barrel 65. A configuration advantageous for downsizing is realized. That is, the microscope barrel 65 can be reduced in size. In particular, in the example illustrated in FIG. 2, the optical path length adjustment unit 63 is disposed on the optical path of the reference light and outside the microscope barrel 65, so that the microscope barrel 65 is downsized.
上述したように、OCTではサンプルアームにおけるリファレンスアームの光路長と同じ光路長となる眼EY11の部分が断層像取得面とされ、その断層像取得面を含む断層像取得範囲の断層像が撮像される。
As described above, in the OCT, the portion of the eye EY11 that has the same optical path length as that of the reference arm in the sample arm is used as a tomographic image acquisition surface, and a tomographic image in the tomographic image acquisition range including the tomographic image acquisition surface is captured The
したがって、断層像取得範囲のZ方向の位置、つまり断層像の取得対象となる深さ方向(Z方向)の範囲の調整にあたっては、リファレンスアームの光路長を変更すればよい。
Therefore, the optical path length of the reference arm may be changed in adjusting the position in the Z direction of the tomographic image acquisition range, that is, the range in the depth direction (Z direction) from which tomographic images are acquired.
画像情報取得部21では、光路長調整部63によりリファレンスアームの光路長が調整されるが、例えば光路長調整部63は、図3や図4に示す構成とすることができる。なお、図3および図4において、図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
In the image information acquisition unit 21, the optical path length of the reference arm is adjusted by the optical path length adjustment unit 63. For example, the optical path length adjustment unit 63 can be configured as shown in FIGS. 3 and 4. 3 and 4, the same reference numerals are given to the portions corresponding to those in FIG. 2, and description thereof will be omitted as appropriate.
例えば図3に示す例では、光路長調整部63はコリメートレンズ201、リファレンスミラー202、および駆動部203を有している。
For example, in the example illustrated in FIG. 3, the optical path length adjustment unit 63 includes a collimating lens 201, a reference mirror 202, and a driving unit 203.
ここでは、コリメートレンズ201およびリファレンスミラー202が、参照光の光路上に配置されており、特に光ファイバ82の端部分にコリメートレンズ201が配置されている。
Here, the collimating lens 201 and the reference mirror 202 are arranged on the optical path of the reference light, and in particular, the collimating lens 201 is arranged at the end portion of the optical fiber 82.
したがって、光ファイバ82により導かれて光路長調整部63に入射してきた参照光は、コリメートレンズ201により集光されてリファレンスミラー202に入射する。
Therefore, the reference light guided by the optical fiber 82 and incident on the optical path length adjustment unit 63 is condensed by the collimator lens 201 and incident on the reference mirror 202.
さらに、コリメートレンズ201からリファレンスミラー202へと入射した参照光は、リファレンスミラー202において反射され、コリメートレンズ201を介して光ファイバ82へと入射する。このようにして光ファイバ82へと入射した参照光は、光ファイバ82を通って受光部64へと入射する。
Furthermore, the reference light that has entered the reference mirror 202 from the collimator lens 201 is reflected by the reference mirror 202 and enters the optical fiber 82 via the collimator lens 201. The reference light incident on the optical fiber 82 in this way enters the light receiving unit 64 through the optical fiber 82.
光路長調整部63では、配置位置が可変であるリファレンスミラー202が参照光の光路上に配置されており、そのリファレンスミラー202の配置位置を変化させることで参照光の光路長の調整が行われる。
In the optical path length adjustment unit 63, the reference mirror 202 whose arrangement position is variable is arranged on the optical path of the reference light, and the optical path length of the reference light is adjusted by changing the arrangement position of the reference mirror 202. .
具体的には、光路長調整部63では参照光の光路上に配置されたリファレンスミラー202を、参照光の進行方向と平行な方向、すなわち図中、矢印A11に示す方向に物理的に移動させる駆動部203が設けられている。
Specifically, the optical path length adjusting unit 63 physically moves the reference mirror 202 disposed on the optical path of the reference light in a direction parallel to the traveling direction of the reference light, that is, in the direction indicated by the arrow A11 in the drawing. A drive unit 203 is provided.
駆動部203がリファレンスミラー202を移動させると、コリメートレンズ201からリファレンスミラー202までの距離が変化するので、これにより参照光の光路長、つまりリファレンスアームの光路長が変化する。
When the drive unit 203 moves the reference mirror 202, the distance from the collimating lens 201 to the reference mirror 202 changes, so that the optical path length of the reference light, that is, the optical path length of the reference arm changes.
また、例えば図4に示す例では、光路長調整部63はディレイライン231、コリメートレンズ232、およびリファレンスミラー233を有している。
For example, in the example shown in FIG. 4, the optical path length adjustment unit 63 includes a delay line 231, a collimator lens 232, and a reference mirror 233.
ここでは、ディレイライン231、コリメートレンズ232、およびリファレンスミラー233が、参照光の光路上に配置されている。特に光ファイバ82の端部分にディレイライン231が配置されており、ディレイライン231とリファレンスミラー233の間にコリメートレンズ232が配置されている。
Here, the delay line 231, the collimating lens 232, and the reference mirror 233 are arranged on the optical path of the reference light. In particular, a delay line 231 is disposed at the end portion of the optical fiber 82, and a collimator lens 232 is disposed between the delay line 231 and the reference mirror 233.
したがって、光ファイバ82により導かれて光路長調整部63に入射してきた参照光は、ディレイライン231を介してコリメートレンズ232に入射し、コリメートレンズ232により集光されてリファレンスミラー233へと入射する。
Therefore, the reference light guided by the optical fiber 82 and incident on the optical path length adjusting unit 63 enters the collimator lens 232 via the delay line 231, is condensed by the collimator lens 232, and enters the reference mirror 233. .
さらに、コリメートレンズ232からリファレンスミラー233へと入射した参照光は、リファレンスミラー233において反射され、コリメートレンズ232およびディレイライン231を介して光ファイバ82へと入射する。このようにして光ファイバ82へと入射した参照光は、光ファイバ82を通って受光部64へと入射する。
Furthermore, the reference light that has entered the reference mirror 233 from the collimator lens 232 is reflected by the reference mirror 233 and enters the optical fiber 82 via the collimator lens 232 and the delay line 231. The reference light incident on the optical fiber 82 in this way enters the light receiving unit 64 through the optical fiber 82.
例えばディレイライン231は、オプティカルディレイラインと呼ばれるデバイスにより構成されており、ディレイライン231では電気的に参照光の遅延制御、つまり参照光の光路長の調整が可能となっている。
For example, the delay line 231 is configured by a device called an optical delay line, and the delay line 231 can electrically control the delay of the reference light, that is, adjust the optical path length of the reference light.
具体的には、例えばディレイライン231に電圧信号または電流信号が供給されると、ディレイライン231内部の屈折率が変化し、これにより参照光の光路長、つまりリファレンスアームの光路長が変化する。
Specifically, for example, when a voltage signal or a current signal is supplied to the delay line 231, the refractive index inside the delay line 231 changes, thereby changing the optical path length of the reference light, that is, the optical path length of the reference arm.
ディレイライン231によりリファレンスアームの光路長を調整する場合、図3に示したようにリファレンスミラー202を物理的に動かす場合よりも、より高速に光路長の調整を行うことができる。
When the optical path length of the reference arm is adjusted by the delay line 231, the optical path length can be adjusted at a higher speed than when the reference mirror 202 is physically moved as shown in FIG.
なお、光路長調整部63において、図3に示したようにリファレンスミラーを移動させる構成と、図4に示したようにディレイラインを用いる構成とを組わせてリファレンスアームの光路長を調整するようにしてもよいし、他の構成によりリファレンスアームの光路長を調整してもよい。したがって、例えば図4に示す光路長調整部63において、リファレンスミラー233の配置位置が可変とされるようにしてもよい。
In the optical path length adjusting unit 63, the optical path length of the reference arm is adjusted by combining the configuration for moving the reference mirror as shown in FIG. 3 and the configuration using the delay line as shown in FIG. Alternatively, the optical path length of the reference arm may be adjusted by other configurations. Therefore, for example, in the optical path length adjusting unit 63 shown in FIG. 4, the arrangement position of the reference mirror 233 may be variable.
以上のような図3や図4に示した構成(機構)によりリファレンスアームの光路長を調整すれば、顕微鏡鏡筒全体を移動させる方法よりも、より高速に断層像取得範囲のZ方向の位置を調整することができる。
If the optical path length of the reference arm is adjusted by the configuration (mechanism) shown in FIGS. 3 and 4 as described above, the position in the Z direction of the tomographic image acquisition range is faster than the method of moving the entire microscope barrel. Can be adjusted.
〈OCT合焦位置の調整について〉
また、OCTが搭載された一般的な顕微鏡システムには、顕微鏡での明視野観察時の合焦位置の制御、つまり明視野観察時のフォーカス制御とは独立してOCT合焦位置の制御を行うことができる構成となっているものもある。 <About adjusting the OCT focus position>
Also, a general microscope system equipped with OCT controls the focus position during bright-field observation with a microscope, that is, controls the OCT focus position independently of focus control during bright-field observation. Some are configured to be able to.
また、OCTが搭載された一般的な顕微鏡システムには、顕微鏡での明視野観察時の合焦位置の制御、つまり明視野観察時のフォーカス制御とは独立してOCT合焦位置の制御を行うことができる構成となっているものもある。 <About adjusting the OCT focus position>
Also, a general microscope system equipped with OCT controls the focus position during bright-field observation with a microscope, that is, controls the OCT focus position independently of focus control during bright-field observation. Some are configured to be able to.
そのような場合、例えばOCT用フォーカスレンズ73に対応するフォーカスレンズを複数種類用意しておき、それらのフォーカスレンズのうちの何れかを観察光の光路上に選択的に配置してOCT合焦位置を変化させる構成とされるのが一般的である。すなわち、サンプルアーム上に配置するフォーカスレンズを交換することで、OCT合焦位置の調整が行われる。
In such a case, for example, a plurality of types of focus lenses corresponding to the OCT focus lens 73 are prepared, and any one of these focus lenses is selectively arranged on the optical path of the observation light, so that the OCT focus position is obtained. In general, it is configured to change the above. In other words, the OCT focusing position is adjusted by exchanging the focus lens arranged on the sample arm.
また、OCTが搭載された一般的な顕微鏡システムにおけるOCT合焦位置の調整方法の他の例として、OCT用フォーカスレンズ73に対応する固定形状のフォーカスレンズを光軸方向に移動させることで、OCT合焦位置を調整する方法も知られている。
As another example of the adjustment method of the OCT focusing position in a general microscope system equipped with an OCT, a fixed-shaped focus lens corresponding to the OCT focus lens 73 is moved in the optical axis direction to thereby move the OCT. A method for adjusting the in-focus position is also known.
しかしながら、これらの方法では、例えば術具の動き等に追随させてOCT合焦位置を変化させるなど、高速で連続的にOCT合焦位置を調整することは困難であった。
However, with these methods, it is difficult to continuously adjust the OCT focus position at a high speed, for example, by changing the OCT focus position by following the movement of the surgical instrument.
そこで、画像情報取得部21では、フォーカスの変更機構を電気的に制御可能とするために可変焦点レンズがOCT用フォーカスレンズ73として採用されている。このようなOCT用フォーカスレンズ73は、上述したように電気制御によりレンズ形状を変更することができ、これによりOCT用フォーカスレンズ73の屈折力が変化し、結果としてOCT合焦位置が変化する。
Therefore, in the image information acquisition unit 21, a variable focus lens is employed as the OCT focus lens 73 in order to make it possible to electrically control the focus changing mechanism. As described above, the lens shape of the OCT focus lens 73 can be changed by electrical control. As a result, the refractive power of the OCT focus lens 73 changes, and as a result, the OCT focus position changes.
このような可変焦点レンズをOCT用フォーカスレンズ73として用いれば、OCT用フォーカスレンズ73を交換する場合や、OCT用フォーカスレンズ73を光軸方向に移動させる場合と比較して、より高速にOCT合焦位置を変化させることができる。これにより、例えば眼EY11の手術に用いられる術具に追随して、高速で連続的にOCT合焦位置を調整することができる。
If such a variable focus lens is used as the OCT focus lens 73, the OCT focusing lens 73 is replaced at a higher speed than when the OCT focus lens 73 is replaced or when the OCT focus lens 73 is moved in the optical axis direction. The focal position can be changed. Thereby, for example, the OCT focusing position can be adjusted continuously at a high speed following the surgical instrument used for the operation of the eye EY11.
〈断層像取得範囲の調整とOCT合焦位置の調整の連動について〉
また、OCTが搭載された一般的な顕微鏡システムには、断層像取得範囲を調整する機構と、OCT合焦位置を調整する機構とが設けられているものもある。 <Linking the adjustment of the tomographic image acquisition range and the OCT focusing position>
Some general microscope systems equipped with an OCT include a mechanism for adjusting a tomographic image acquisition range and a mechanism for adjusting an OCT focusing position.
また、OCTが搭載された一般的な顕微鏡システムには、断層像取得範囲を調整する機構と、OCT合焦位置を調整する機構とが設けられているものもある。 <Linking the adjustment of the tomographic image acquisition range and the OCT focusing position>
Some general microscope systems equipped with an OCT include a mechanism for adjusting a tomographic image acquisition range and a mechanism for adjusting an OCT focusing position.
しかし、それらの機構は互いに独立して制御されるため、例えば断層像取得範囲の位置をZ方向に調整した場合に、OCT合焦位置の調整は行われないので、OCT合焦位置が断層像取得範囲外の位置となってしまうことがあった。
However, since these mechanisms are controlled independently of each other, for example, when the position of the tomographic image acquisition range is adjusted in the Z direction, the OCT focusing position is not adjusted. In some cases, the position was outside the acquisition range.
そうすると、術者が注目する位置、つまり断層像取得範囲の位置と、OCT合焦位置とのZ方向のずれが大きくなり、術者が注目する位置に合焦できなくなってしまう。すなわち、断層画像がぼけてしまうおそれがあった。
In this case, the position in which the surgeon pays attention, that is, the position in the tomographic image acquisition range, and the OCT focusing position become large in the Z direction, and the operator cannot focus on the focus. That is, the tomographic image may be blurred.
例えば図5に示すように、眼EY11に観察光としてのビームBM11が照射されて断層像が取得されるとする。なお、図5において図2における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
For example, as shown in FIG. 5, it is assumed that a tomographic image is acquired by irradiating the eye EY11 with a beam BM11 as observation light. In FIG. 5, parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted as appropriate.
図5では図中、上下方向がZ方向となっており、Z方向における矢印Q11に示す位置がOCT合焦位置となっている。このOCT合焦位置は、Z方向において観察光であるビームBM11が最も収斂されている位置、すなわちビームBM11のビーム径が最も小さくなっている位置である。
In FIG. 5, the vertical direction in the figure is the Z direction, and the position indicated by the arrow Q11 in the Z direction is the OCT focusing position. This OCT in-focus position is a position where the beam BM11 which is the observation light is most converged in the Z direction, that is, a position where the beam diameter of the beam BM11 is the smallest.
また、矢印Q12に示す範囲が断層像取得範囲のうちのZ方向の範囲となっており、断層像取得範囲のZ方向の範囲のうち、矢印Q13により示される位置が断層像取得範囲のZ方向の範囲の中心位置となっている。この矢印Q13により示される位置は断層像取得面である。
Further, the range indicated by the arrow Q12 is the Z direction range of the tomographic image acquisition range, and the position indicated by the arrow Q13 is the Z direction of the tomographic image acquisition range among the Z direction range of the tomographic image acquisition range. The center position of the range. The position indicated by the arrow Q13 is the tomographic image acquisition plane.
特に、図5の例ではOCT合焦位置が断層像取得面上に位置した状態となっている。この状態では、OCT合焦位置が断層像取得範囲内に位置しているので、断層像取得面にフォーカスの合った鮮明な断層像を得ることができる。
In particular, in the example of FIG. 5, the OCT focusing position is located on the tomographic image acquisition surface. In this state, since the OCT focusing position is located within the tomographic image acquisition range, a clear tomographic image in focus on the tomographic image acquisition surface can be obtained.
なお、ここではOCT合焦位置が断層像取得面上の位置となっている例が示されているが、OCT合焦位置が断層像取得面上になくても断層像取得範囲内に位置していれば、鮮明な断層画像を得ることができる。したがって、OCT合焦位置は断層像取得面上の位置に限らず、断層像取得範囲内の位置であれば、どのような位置とされてもよい。
Here, an example is shown in which the OCT focusing position is a position on the tomographic image acquisition plane, but the OCT focusing position is not within the tomographic image acquisition plane but is positioned within the tomographic image acquisition range. If so, a clear tomographic image can be obtained. Therefore, the OCT focusing position is not limited to the position on the tomographic image acquisition surface, and may be any position as long as it is within the tomographic image acquisition range.
いま、図5に示す状態から、例えば制御部33がOCT合焦位置を固定したまま、光路長調整部63を制御し、断層像取得範囲のZ方向の位置を変更したとする。
Now, from the state illustrated in FIG. 5, for example, it is assumed that the control unit 33 controls the optical path length adjustment unit 63 while the OCT focusing position is fixed, and changes the position in the Z direction of the tomographic image acquisition range.
そのような場合、OCT合焦位置は変化せずに断層像取得範囲がZ方向に動くので、断層像取得範囲の調整後、OCT合焦位置が断層像取得範囲内に位置することは保証されない。
In such a case, since the OCT focusing position does not change and the tomographic image acquisition range moves in the Z direction, it is not guaranteed that the OCT focusing position is located within the tomographic image acquisition range after adjustment of the tomographic image acquisition range. .
すなわち、OCT合焦位置と断層像取得範囲の何れか一方のみを調整した場合、OCT合焦位置が断層像取得範囲外に位置してしまうこともある。そうすると、画像情報取得部21で得られる断層画像が不鮮明なものとなってしまう可能性がある。
That is, when only one of the OCT focusing position and the tomographic image acquisition range is adjusted, the OCT focusing position may be located outside the tomographic image acquisition range. As a result, the tomographic image obtained by the image information acquisition unit 21 may become unclear.
そこで、手術顕微鏡システム11では、OCT合焦位置と断層像取得範囲が連動して調整されるように制御を行うことで、フォーカスの合った鮮明な断層画像を得ることができるようにした。すなわち、術者の注目する位置に合焦した断層像を得ることができるようにした。
Therefore, the surgical microscope system 11 can obtain a focused and clear tomographic image by controlling the OCT focusing position and the tomographic image acquisition range to be adjusted in conjunction with each other. That is, it is possible to obtain a tomographic image focused on the position focused by the operator.
具体的には、手術顕微鏡システム11では、制御部33により光路長調整部63の動作が制御され、リファレンスアームの光路長が調整される。
Specifically, in the surgical microscope system 11, the operation of the optical path length adjustment unit 63 is controlled by the control unit 33, and the optical path length of the reference arm is adjusted.
したがって、制御部33は、リファレンスアームの光路長を把握しているので、そのリファレンスアームの光路長に対して定まる断層像取得範囲のZ方向の位置、つまり断層像の取得対象となるZ方向の範囲を特定することが可能である。
Therefore, since the control unit 33 grasps the optical path length of the reference arm, the position in the Z direction of the tomographic image acquisition range determined with respect to the optical path length of the reference arm, that is, the Z direction in which the tomographic image is to be acquired. It is possible to specify a range.
また、制御部33はOCT用フォーカスレンズ73の制御、すなわちOCT合焦位置の調整も行う。
The control unit 33 also controls the OCT focus lens 73, that is, adjusts the OCT focusing position.
したがって、制御部33は、断層像取得範囲のZ方向の位置だけでなくOCT合焦位置も把握しているので、常にOCT合焦位置が断層像取得範囲内に位置するように、OCT合焦位置と断層像取得範囲を連動して変更することができる。換言すれば、制御部33は、常にOCT合焦位置が断層像取得範囲内に位置するように、光路長調整部63およびOCT用フォーカスレンズ73を制御する。
Therefore, since the control unit 33 knows not only the position in the Z direction of the tomographic image acquisition range but also the OCT focusing position, the OCT focusing is always performed so that the OCT focusing position is located within the tomographic image acquisition range. The position and the tomographic image acquisition range can be changed in conjunction with each other. In other words, the control unit 33 controls the optical path length adjustment unit 63 and the OCT focus lens 73 so that the OCT focus position is always within the tomographic image acquisition range.
なお、OCT合焦位置は断層像取得面上の位置など、断層像取得範囲内の固定の位置となるように調整されてもよい。すなわち、この場合、断層像取得範囲に対するOCT合焦位置の相対的な位置が常に同じ位置となるように、制御部33によりOCT合焦位置と断層像取得範囲の位置の調整が制御されることになる。
Note that the OCT focusing position may be adjusted to be a fixed position within the tomographic image acquisition range, such as a position on the tomographic image acquisition surface. That is, in this case, the controller 33 controls the adjustment of the OCT focusing position and the position of the tomographic image acquisition range so that the relative position of the OCT focusing position with respect to the tomographic image acquisition range is always the same position. become.
また、断層画像の鮮明化を目的として、断層像取得範囲内の複数の位置が順番にOCT合焦位置とされ、それらの複数のOCT合焦位置ごとに断層情報が取得されるようにしてもよい。すなわち、断層像取得範囲の位置が固定された状態で、断層像取得範囲内においてOCT合焦位置がZ方向に走査されるようにしてもよい。
Further, for the purpose of sharpening the tomographic image, a plurality of positions within the tomographic image acquisition range are sequentially set as the OCT focusing positions, and the tomographic information is acquired for each of the plurality of OCT focusing positions. Good. That is, the OCT in-focus position may be scanned in the Z direction within the tomographic image acquisition range while the position of the tomographic image acquisition range is fixed.
この場合、画像情報取得部21では、OCT合焦位置ごとに得られた断層情報に基づいて画像処理を行って最終的な1つの断層情報を得るようにすれば、鮮明な断層画像を得ることができるようになる。
In this case, if the image information acquisition unit 21 performs image processing based on the tomographic information obtained for each OCT in-focus position to obtain one final tomographic information, a clear tomographic image can be obtained. Will be able to.
〈断層情報取得処理の説明〉
続いて、手術顕微鏡システム11の動作について説明する。すなわち、以下、図6のフローチャートを参照して、手術顕微鏡システム11により行われる断層情報取得処理について説明する。この断層情報取得処理は、例えば術者等により断層情報の取得が指示されると開始される。 <Description of fault information acquisition processing>
Subsequently, the operation of thesurgical microscope system 11 will be described. That is, hereinafter, tomographic information acquisition processing performed by the surgical microscope system 11 will be described with reference to the flowchart of FIG. This tomographic information acquisition process is started when acquisition of tomographic information is instructed by an operator, for example.
続いて、手術顕微鏡システム11の動作について説明する。すなわち、以下、図6のフローチャートを参照して、手術顕微鏡システム11により行われる断層情報取得処理について説明する。この断層情報取得処理は、例えば術者等により断層情報の取得が指示されると開始される。 <Description of fault information acquisition processing>
Subsequently, the operation of the
また、断層情報取得処理が開始されると、光源61により光が出力される。
In addition, when the tomographic information acquisition process is started, light is output from the light source 61.
光源61から出力された光の一部は観察光となって光ファイバ81、コリメートレンズ71、走査部72、OCT用フォーカスレンズ73、および対物レンズ74を介して眼EY11に照射される。
A part of the light output from the light source 61 is irradiated to the eye EY11 through the optical fiber 81, the collimating lens 71, the scanning unit 72, the OCT focus lens 73, and the objective lens 74 as observation light.
そして、眼EY11で反射した観察光は、対物レンズ74、OCT用フォーカスレンズ73、走査部72、コリメートレンズ71、光ファイバ81、および光ファイバ82を介して受光部64へと入射する。
The observation light reflected by the eye EY11 enters the light receiving unit 64 via the objective lens 74, the OCT focus lens 73, the scanning unit 72, the collimating lens 71, the optical fiber 81, and the optical fiber 82.
これに対して、光源61から出力された光の残りの一部は光ファイバ81から光ファイバ82へと分岐し、参照光となる。そして、参照光は光ファイバ82を介して光路長調整部63に入射するとともに、光路長調整部63内のリファレンスミラーで反射されて、再び光ファイバ82へと入射する。さらに、光路長調整部63から光ファイバ82へと入射した参照光は、光ファイバ82内を通り、受光部64へと入射する。
On the other hand, the remaining part of the light output from the light source 61 branches from the optical fiber 81 to the optical fiber 82 and becomes reference light. Then, the reference light enters the optical path length adjustment unit 63 through the optical fiber 82, is reflected by the reference mirror in the optical path length adjustment unit 63, and enters the optical fiber 82 again. Further, the reference light that has entered the optical fiber 82 from the optical path length adjustment unit 63 passes through the optical fiber 82 and enters the light receiving unit 64.
このようにしてOCTによる眼EY11の観察が開始されると、ステップS11において制御部33は、断層像取得範囲およびOCT合焦位置を決定する。
When the observation of the eye EY11 by the OCT is started in this manner, in step S11, the control unit 33 determines the tomographic image acquisition range and the OCT focusing position.
例えば制御部33は、インターフェース部32から供給された、術者等により指定された断層面を示す情報や、画像認識部31から供給された認識結果などに基づいて、OCT合焦位置が断層像取得範囲内に位置するように、断層像取得範囲およびOCT合焦位置を決定する。
For example, the control unit 33 determines whether the OCT in-focus position is a tomographic image based on information indicating a tomographic plane designated by an operator or the like supplied from the interface unit 32 or a recognition result supplied from the image recognition unit 31. The tomographic image acquisition range and the OCT focusing position are determined so as to be located within the acquisition range.
ステップS12において制御部33は、ステップS11で決定した断層像取得範囲に基づいて、走査系である走査部72を制御する。
In step S12, the control unit 33 controls the scanning unit 72, which is a scanning system, based on the tomographic image acquisition range determined in step S11.
例えば制御部33は、XY方向(XY平面)において、眼EY11におけるステップS11で決定した断層像取得範囲の領域に観察光が照射されるように、走査部72を制御してスキャンミラー111を所定の角度だけ回転(回動)させる。
For example, the control unit 33 controls the scanning unit 72 to set the scan mirror 111 in a predetermined manner so that the observation light is irradiated to the region of the tomographic image acquisition range determined in step S11 in the eye EY11 in the XY direction (XY plane). Rotate (rotate) the angle.
ステップS13において制御部33は、ステップS11で決定した断層像取得範囲に基づいて光路長調整部63を制御し、リファレンスアームの光路長を調整する。
In step S13, the control unit 33 controls the optical path length adjustment unit 63 based on the tomographic image acquisition range determined in step S11 to adjust the optical path length of the reference arm.
例えば光路長調整部63が図3に示した構成とされる場合、制御部33は、Z方向において、実際の断層像取得範囲がステップS11で決定した断層像取得範囲となるように、駆動部203を制御してリファレンスミラー202を移動させる。
For example, when the optical path length adjustment unit 63 has the configuration shown in FIG. 3, the control unit 33 drives the drive unit so that the actual tomographic image acquisition range is the tomographic image acquisition range determined in step S11 in the Z direction. The reference mirror 202 is moved by controlling 203.
また、例えば光路長調整部63が図4に示した構成とされる場合、制御部33は、Z方向において、実際の断層像取得範囲がステップS11で決定した断層像取得範囲となるように、ディレイライン231に電圧を印加し、リファレンスアームの光路長を調整する。
For example, when the optical path length adjustment unit 63 has the configuration shown in FIG. 4, the control unit 33 sets the actual tomographic image acquisition range in the Z direction to be the tomographic image acquisition range determined in step S <b> 11. A voltage is applied to the delay line 231 to adjust the optical path length of the reference arm.
これらのステップS12およびステップS13の処理により、ステップS11で決定された断層像取得範囲が断層像(断層情報)の取得対象の領域とされて断層情報が取得されるようになる。
By the processing of step S12 and step S13, the tomographic image acquisition range determined in step S11 is set as the acquisition target region of the tomographic image (tomographic information), and the tomographic information is acquired.
ステップS14において制御部33は、ステップS11で決定したOCT合焦位置に基づいてOCT用フォーカスレンズ73を制御する。
In step S14, the control unit 33 controls the OCT focus lens 73 based on the OCT focusing position determined in step S11.
例えば制御部33は、ステップS11で決定したOCT合焦位置に対して定まる電圧信号をOCT用フォーカスレンズ73に印加することで、OCT用フォーカスレンズ73の屈折力を変化させる。これにより、観察光がステップS11で決定したOCT合焦位置に集光されるようになる。
For example, the control unit 33 changes the refractive power of the OCT focus lens 73 by applying a voltage signal determined with respect to the OCT focus position determined in step S11 to the OCT focus lens 73. As a result, the observation light is condensed at the OCT in-focus position determined in step S11.
以上のステップS11乃至ステップS14の処理により、OCT合焦位置と断層像取得範囲の連動制御が実現される。
As a result of the processing in steps S11 to S14 described above, interlocking control of the OCT focusing position and the tomographic image acquisition range is realized.
ステップS15において、画像情報取得部21は断層情報を取得する。
In step S15, the image information acquisition unit 21 acquires tomographic information.
すなわち、これまでの処理により、ステップS11で決定された断層像取得範囲に観察光が照射され、断層像取得範囲内で反射された観察光と、光路長調整部63で反射された参照光とが受光部64に入射してくることになる。
That is, by the processing so far, the observation light is irradiated on the tomographic image acquisition range determined in step S11 and reflected within the tomographic image acquisition range, and the reference light reflected by the optical path length adjustment unit 63 and Is incident on the light receiving portion 64.
受光部64は、入射した観察光と参照光を受光して光電変換し、その結果得られた断層情報を出力する。画像情報取得部21は、このようにして受光部64から出力された断層情報を取得する。また、画像情報取得部21は、必要に応じて、複数の各断層像取得範囲で得られた断層情報から断層画像やボリュームデータを構築(生成)し、画像認識部31および表示情報生成部34に供給する。
The light receiving unit 64 receives incident observation light and reference light, performs photoelectric conversion, and outputs the tomographic information obtained as a result. The image information acquisition unit 21 acquires the tomographic information output from the light receiving unit 64 in this way. Further, the image information acquisition unit 21 constructs (generates) a tomographic image and volume data from the tomographic information obtained in each of a plurality of tomographic image acquisition ranges as necessary, and the image recognition unit 31 and the display information generation unit 34. To supply.
ステップS16において、制御部33は断層情報の取得を終了するか否かを判定する。
In step S16, the control unit 33 determines whether to end the acquisition of tomographic information.
例えば術者等によりインターフェース部32が操作されて断層情報の取得終了が指示された場合や、術者等により指示された断層画像が得られた場合などに、断層情報の取得を終了すると判定される。
For example, when the operator has operated the interface unit 32 to instruct the end of tomographic information acquisition or when a tomographic image instructed by the operator or the like has been obtained, it is determined that acquisition of tomographic information is to end. The
ステップS16において、まだ断層情報の取得を終了しないと判定された場合、処理はステップS11に戻り、上述した処理が繰り返し行われる。この場合、例えば術者により指定された範囲の各領域の断層情報を得るために、新たな領域が断層像取得範囲とされて断層情報が取得される。すなわち、断層像取得範囲がずらされて断層情報の取得が行われる。
If it is determined in step S16 that the acquisition of tomographic information has not been completed yet, the process returns to step S11, and the above-described process is repeated. In this case, for example, in order to obtain the tomographic information of each region in the range designated by the operator, the new region is taken as the tomographic image acquisition range and the tomographic information is obtained. That is, the tomographic information is acquired by shifting the tomographic image acquisition range.
これに対して、ステップS16において断層情報の取得を終了すると判定された場合、手術顕微鏡システム11の各部は断層情報を取得するための動作を停止し、断層情報取得処理は終了する。
On the other hand, when it is determined in step S16 that the acquisition of tomographic information is to be terminated, each part of the surgical microscope system 11 stops the operation for acquiring the tomographic information, and the tomographic information acquiring process is ended.
以上のようにして手術顕微鏡システム11は、OCT合焦位置と断層像取得範囲を決定し、その決定に従って断層情報を取得する。このようにOCT合焦位置と断層像取得範囲の調整を連動して制御することにより、鮮明な断層画像を得ることができる。
As described above, the surgical microscope system 11 determines the OCT focusing position and the tomographic image acquisition range, and acquires tomographic information according to the determination. Thus, a clear tomographic image can be obtained by controlling the OCT focusing position and the adjustment of the tomographic image acquisition range in conjunction with each other.
以上のように、本技術によればリファレンスアームの光路長を調整することにより断層情報の取得対象とするZ方向の範囲(領域)を調整するようにしたので、リファレンスアームの光路長の調整機構である光路長調整部63を顕微鏡鏡筒65外に配置することができる。これにより、断層像取得範囲のZ方向の調整を高速に行いつつ、顕微鏡鏡筒65の小型化も図ることができる。
As described above, according to the present technology, the optical path length of the reference arm is adjusted by adjusting the optical path length of the reference arm, thereby adjusting the range (region) in the Z direction as the acquisition target of the tomographic information. The optical path length adjusting unit 63 can be arranged outside the microscope barrel 65. Thereby, the microscope barrel 65 can be reduced in size while adjusting the Z direction of the tomographic image acquisition range at high speed.
〈コンピュータの構成例〉
ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。 <Example of computer configuration>
By the way, the above-described series of processing can be executed by hardware or can be executed by software. When a series of processing is executed by software, a program constituting the software is installed in the computer. Here, the computer includes, for example, a general-purpose personal computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
ところで、上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。 <Example of computer configuration>
By the way, the above-described series of processing can be executed by hardware or can be executed by software. When a series of processing is executed by software, a program constituting the software is installed in the computer. Here, the computer includes, for example, a general-purpose personal computer capable of executing various functions by installing a computer incorporated in dedicated hardware and various programs.
図7は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
FIG. 7 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
コンピュータにおいて、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
In the computer, a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, and a RAM (Random Access Memory) 503 are connected to each other via a bus 504.
バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
An input / output interface 505 is further connected to the bus 504. An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
入力部506は、キーボード、マウス、マイクロホン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
The input unit 506 includes a keyboard, a mouse, a microphone, an image sensor, and the like. The output unit 507 includes a display, a speaker, and the like. The recording unit 508 includes a hard disk, a nonvolatile memory, and the like. The communication unit 509 includes a network interface or the like. The drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
以上のように構成されるコンピュータでは、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
In the computer configured as described above, the CPU 501 loads the program recorded in the recording unit 508 to the RAM 503 via the input / output interface 505 and the bus 504 and executes the program, for example. Is performed.
コンピュータ(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
The program executed by the computer (CPU 501) can be provided by being recorded in a removable recording medium 511 as a package medium, for example. The program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
コンピュータでは、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
In the computer, the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Further, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in the ROM 502 or the recording unit 508 in advance.
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
The program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
The embodiments of the present technology are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present technology.
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
For example, the present technology can take a cloud computing configuration in which one function is shared by a plurality of devices via a network and is jointly processed.
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
Further, each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
Further, when a plurality of processes are included in one step, the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
さらに、本技術は、以下の構成とすることも可能である。
Furthermore, the present technology can be configured as follows.
(1)
観察対象である生体組織を観察するための顕微鏡光学系と、
前記生体組織に照射される観察光の反射光と、前記生体組織に照射されない参照光との干渉を利用して前記生体組織の断層情報を取得するための断層情報取得光学系とを備え、
前記断層情報取得光学系は、前記参照光の光路長を調整する光路長調整部を備える
手術顕微鏡システム。
(2)
前記光路長調整部は、前記顕微鏡光学系が設けられた顕微鏡の鏡筒外に配置されている
(1)に記載の手術顕微鏡システム。
(3)
前記断層情報取得光学系は、前記断層情報取得光学系の光軸方向における前記観察光の合焦位置を調整するフォーカスレンズをさらに備える
(1)または(2)に記載の手術顕微鏡システム。
(4)
前記フォーカスレンズは可変焦点レンズである
(3)に記載の手術顕微鏡システム。
(5)
前記参照光の光路長により定まる、前記断層情報の取得対象となる前記生体組織の領域内に前記合焦位置が位置するように、前記光路長調整部および前記フォーカスレンズを制御する制御部をさらに備える
(3)または(4)に記載の手術顕微鏡システム。
(6)
前記光路長調整部は、前記参照光の光路上に配置されたオプティカルディレイラインを有している
(1)乃至(5)の何れか一項に記載の手術顕微鏡システム。
(7)
前記光路長調整部は、前記参照光の光路上に配置された、配置位置が可変であるミラーを有し、前記ミラーの前記配置位置を変化させることで前記参照光の光路長を調整する
(1)乃至(6)の何れか一項に記載の手術顕微鏡システム。
(8)
前記生体組織は眼である
(1)乃至(7)の何れか一項に記載の手術顕微鏡システム。 (1)
A microscope optical system for observing a biological tissue to be observed;
A tomographic information acquisition optical system for acquiring tomographic information of the biological tissue using interference between reflected light of observation light irradiated on the biological tissue and reference light not irradiated on the biological tissue;
The tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light.
(2)
The said optical path length adjustment part is a surgery microscope system as described in (1) arrange | positioned outside the lens-barrel of the microscope in which the said microscope optical system was provided.
(3)
The surgical microscope system according to (1) or (2), wherein the tomographic information acquisition optical system further includes a focus lens that adjusts a focus position of the observation light in an optical axis direction of the tomographic information acquisition optical system.
(4)
The surgical microscope system according to (3), wherein the focus lens is a variable focus lens.
(5)
A controller that controls the optical path length adjustment unit and the focus lens so that the in-focus position is located in the region of the biological tissue that is to be acquired by the tomographic information, which is determined by the optical path length of the reference light; The surgical microscope system according to (3) or (4).
(6)
The surgical microscope system according to any one of (1) to (5), wherein the optical path length adjustment unit includes an optical delay line disposed on an optical path of the reference light.
(7)
The optical path length adjustment unit includes a mirror arranged on the optical path of the reference light and having a variable arrangement position, and adjusts the optical path length of the reference light by changing the arrangement position of the mirror. The surgical microscope system according to any one of 1) to (6).
(8)
The surgical microscope system according to any one of (1) to (7), wherein the living tissue is an eye.
観察対象である生体組織を観察するための顕微鏡光学系と、
前記生体組織に照射される観察光の反射光と、前記生体組織に照射されない参照光との干渉を利用して前記生体組織の断層情報を取得するための断層情報取得光学系とを備え、
前記断層情報取得光学系は、前記参照光の光路長を調整する光路長調整部を備える
手術顕微鏡システム。
(2)
前記光路長調整部は、前記顕微鏡光学系が設けられた顕微鏡の鏡筒外に配置されている
(1)に記載の手術顕微鏡システム。
(3)
前記断層情報取得光学系は、前記断層情報取得光学系の光軸方向における前記観察光の合焦位置を調整するフォーカスレンズをさらに備える
(1)または(2)に記載の手術顕微鏡システム。
(4)
前記フォーカスレンズは可変焦点レンズである
(3)に記載の手術顕微鏡システム。
(5)
前記参照光の光路長により定まる、前記断層情報の取得対象となる前記生体組織の領域内に前記合焦位置が位置するように、前記光路長調整部および前記フォーカスレンズを制御する制御部をさらに備える
(3)または(4)に記載の手術顕微鏡システム。
(6)
前記光路長調整部は、前記参照光の光路上に配置されたオプティカルディレイラインを有している
(1)乃至(5)の何れか一項に記載の手術顕微鏡システム。
(7)
前記光路長調整部は、前記参照光の光路上に配置された、配置位置が可変であるミラーを有し、前記ミラーの前記配置位置を変化させることで前記参照光の光路長を調整する
(1)乃至(6)の何れか一項に記載の手術顕微鏡システム。
(8)
前記生体組織は眼である
(1)乃至(7)の何れか一項に記載の手術顕微鏡システム。 (1)
A microscope optical system for observing a biological tissue to be observed;
A tomographic information acquisition optical system for acquiring tomographic information of the biological tissue using interference between reflected light of observation light irradiated on the biological tissue and reference light not irradiated on the biological tissue;
The tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light.
(2)
The said optical path length adjustment part is a surgery microscope system as described in (1) arrange | positioned outside the lens-barrel of the microscope in which the said microscope optical system was provided.
(3)
The surgical microscope system according to (1) or (2), wherein the tomographic information acquisition optical system further includes a focus lens that adjusts a focus position of the observation light in an optical axis direction of the tomographic information acquisition optical system.
(4)
The surgical microscope system according to (3), wherein the focus lens is a variable focus lens.
(5)
A controller that controls the optical path length adjustment unit and the focus lens so that the in-focus position is located in the region of the biological tissue that is to be acquired by the tomographic information, which is determined by the optical path length of the reference light; The surgical microscope system according to (3) or (4).
(6)
The surgical microscope system according to any one of (1) to (5), wherein the optical path length adjustment unit includes an optical delay line disposed on an optical path of the reference light.
(7)
The optical path length adjustment unit includes a mirror arranged on the optical path of the reference light and having a variable arrangement position, and adjusts the optical path length of the reference light by changing the arrangement position of the mirror. The surgical microscope system according to any one of 1) to (6).
(8)
The surgical microscope system according to any one of (1) to (7), wherein the living tissue is an eye.
11 手術顕微鏡システム, 21 画像情報取得部, 33 制御部, 61 光源, 62 結合器, 63 光路長調整部, 64 受光部, 65 顕微鏡鏡筒, 72 走査部, 73 OCT用フォーカスレンズ, 74 対物レンズ, 75 顕微鏡光学系, 101 断層情報取得光学系
11 surgical microscope system, 21 image information acquisition unit, 33 control unit, 61 light source, 62 coupler, 63 optical path length adjustment unit, 64 light receiving unit, 65 microscope barrel, 72 scanning unit, 73 OCT focus lens, 74 objective lens , 75 microscope optical system, 101 tomographic information acquisition optical system
Claims (8)
- 観察対象である生体組織を観察するための顕微鏡光学系と、
前記生体組織に照射される観察光の反射光と、前記生体組織に照射されない参照光との干渉を利用して前記生体組織の断層情報を取得するための断層情報取得光学系とを備え、
前記断層情報取得光学系は、前記参照光の光路長を調整する光路長調整部を備える
手術顕微鏡システム。 A microscope optical system for observing a biological tissue to be observed;
A tomographic information acquisition optical system for acquiring tomographic information of the biological tissue using interference between reflected light of observation light irradiated on the biological tissue and reference light not irradiated on the biological tissue;
The tomographic information acquisition optical system includes an optical path length adjustment unit that adjusts an optical path length of the reference light. - 前記光路長調整部は、前記顕微鏡光学系が設けられた顕微鏡の鏡筒外に配置されている
請求項1に記載の手術顕微鏡システム。 The surgical microscope system according to claim 1, wherein the optical path length adjusting unit is disposed outside a microscope barrel provided with the microscope optical system. - 前記断層情報取得光学系は、前記断層情報取得光学系の光軸方向における前記観察光の合焦位置を調整するフォーカスレンズをさらに備える
請求項1に記載の手術顕微鏡システム。 The surgical microscope system according to claim 1, wherein the tomographic information acquisition optical system further includes a focus lens that adjusts a focus position of the observation light in an optical axis direction of the tomographic information acquisition optical system. - 前記フォーカスレンズは可変焦点レンズである
請求項3に記載の手術顕微鏡システム。 The surgical microscope system according to claim 3, wherein the focus lens is a variable focus lens. - 前記参照光の光路長により定まる、前記断層情報の取得対象となる前記生体組織の領域内に前記合焦位置が位置するように、前記光路長調整部および前記フォーカスレンズを制御する制御部をさらに備える
請求項3に記載の手術顕微鏡システム。 A controller that controls the optical path length adjustment unit and the focus lens so that the in-focus position is located in the region of the biological tissue that is to be acquired by the tomographic information, which is determined by the optical path length of the reference light; The surgical microscope system according to claim 3. - 前記光路長調整部は、前記参照光の光路上に配置されたオプティカルディレイラインを有している
請求項1に記載の手術顕微鏡システム。 The surgical microscope system according to claim 1, wherein the optical path length adjustment unit includes an optical delay line disposed on an optical path of the reference light. - 前記光路長調整部は、前記参照光の光路上に配置された、配置位置が可変であるミラーを有し、前記ミラーの前記配置位置を変化させることで前記参照光の光路長を調整する
請求項1に記載の手術顕微鏡システム。 The optical path length adjustment unit includes a mirror arranged on the optical path of the reference light and having a variable arrangement position, and adjusts the optical path length of the reference light by changing the arrangement position of the mirror. Item 2. The surgical microscope system according to Item 1. - 前記生体組織は眼である
請求項1に記載の手術顕微鏡システム。 The surgical microscope system according to claim 1, wherein the living tissue is an eye.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018054228 | 2018-03-22 | ||
JP2018-054228 | 2018-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019181553A1 true WO2019181553A1 (en) | 2019-09-26 |
Family
ID=67986188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/009267 WO2019181553A1 (en) | 2018-03-22 | 2019-03-08 | Surgical microscope system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019181553A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023517598A (en) * | 2020-03-10 | 2023-04-26 | ライカ マイクロシステムズ インコーポレイテッド | Systems, methods, and computer program products for optimizing optics of surgical microscopes with integrated imaging systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090279052A1 (en) * | 2008-05-07 | 2009-11-12 | Christoph Hauger | Ophthalmologic surgical microscope system having an OCT-measuring device |
JP2014115161A (en) * | 2012-12-07 | 2014-06-26 | Nippon Telegr & Teleph Corp <Ntt> | Dynamic focal shift type optical interference tomographic microscope |
JP2015102537A (en) * | 2013-11-28 | 2015-06-04 | キヤノン株式会社 | Optical interference tomograph meter |
-
2019
- 2019-03-08 WO PCT/JP2019/009267 patent/WO2019181553A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090279052A1 (en) * | 2008-05-07 | 2009-11-12 | Christoph Hauger | Ophthalmologic surgical microscope system having an OCT-measuring device |
JP2014115161A (en) * | 2012-12-07 | 2014-06-26 | Nippon Telegr & Teleph Corp <Ntt> | Dynamic focal shift type optical interference tomographic microscope |
JP2015102537A (en) * | 2013-11-28 | 2015-06-04 | キヤノン株式会社 | Optical interference tomograph meter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023517598A (en) * | 2020-03-10 | 2023-04-26 | ライカ マイクロシステムズ インコーポレイテッド | Systems, methods, and computer program products for optimizing optics of surgical microscopes with integrated imaging systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9383568B2 (en) | Objective-coupled selective plane illumination microscopy | |
US7283247B2 (en) | Optical probe system | |
US7304790B2 (en) | Examination apparatus and focusing method of examination apparatus | |
US9134521B2 (en) | Multidirectional selective plane illumination microscopy | |
JP6914241B2 (en) | Systems and methods for 3D imaging | |
US10042148B2 (en) | Light sheet microscope and sheet illumination method | |
EP1580586A1 (en) | Scanning confocal microscope | |
US20190167081A1 (en) | Three-Dimensional Imaging Using Swept, Confocally Aligned Planar Excitation with an Image Relay | |
US20040097791A1 (en) | Endoscope | |
JP6408543B2 (en) | Imaging a light field using a scanning optical unit | |
JP2019502519A (en) | Optical probe, light intensity detection, imaging method and system | |
EP2700352A1 (en) | Tomographic image generation apparatus having modulation and correction device and method of operating the same | |
EP2360505B1 (en) | Microscope apparatus | |
CN114967104A (en) | Image transmission beam large-view-field three-dimensional imaging device and method based on light field regulation | |
WO2019181553A1 (en) | Surgical microscope system | |
US8482853B2 (en) | Stereo microscope system | |
EP2453285A1 (en) | Illumination optical system | |
CN210142077U (en) | Novel selective planar illumination microscope with tiled polished section | |
EP1520199B1 (en) | Optical microscope able to operate a rapid three dimensional modulation of the position of the observation point | |
CN114847868B (en) | Focusing assembly, intermittent focusing scanning and automatic focusing OCT device and method | |
TWI749531B (en) | Scanning device and system of optical coherence tomography system | |
JP2006510932A (en) | Coherence microscope | |
KR101202977B1 (en) | Hybrid Microscope for Simultaneously Observing Surface and Inner Structure of Target Sample | |
US11803043B2 (en) | System and apparatus for dynamically shaped focal surface with a scanning microscope | |
US20230084030A1 (en) | Devices and methods for spatially controllable illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19770280 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19770280 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |