Sl.1. Trigonometrijski trougao
Osnovne trigonometrijske funkcije sinus, kosinus i tangens se obično definišu pomoću pravouglog trougla , slika desno.
x
=
r
⋅
cos
ϕ
,
y
=
r
⋅
sin
ϕ
,
y
x
=
tg
ϕ
.
{\displaystyle x=r\cdot \cos \phi ,\;y=r\cdot \sin \phi ,\;{\frac {y}{x}}=\operatorname {tg} \phi .}
Pozitivan matematički ugao ima suprotan smer od kazaljke na satu, slično kao i kretanje Sunca u odnosu na sunčevu senku na slici 2.
Trigonometrijska kružnica
uredi
Na slici (3) dole je kružnica poluprečnika jedan sa centrom u ishodištu, tj.
x
2
+
y
2
=
1
,
{\displaystyle x^{2}+y^{2}=1,}
koja se zove trigonometrijska kružnica .
U sledećoj definiciji i teoremi (1), tangens i kotangens (b) se u anglosaksonskim zemljama označavaju tan i cot, kosekans (v) se i kod nas označava cosec.
Sl.3. Trigonometrijska kružnica
Definicija 1
Trigonometrijske realne funkcije ugla φ definišu se jednakostima
(a)
cos
2
ϕ
+
sin
2
ϕ
=
1
,
{\displaystyle \cos ^{2}\phi +\sin ^{2}\phi =1,\,}
sinus i kosinus su realni brojevi ;
(b)
tg
ϕ
=
sin
ϕ
cos
ϕ
,
ctg
ϕ
=
cos
ϕ
sin
ϕ
,
{\displaystyle \operatorname {tg} \phi ={\frac {\sin \phi }{\cos \phi }},\;\operatorname {ctg} \phi ={\frac {\cos \phi }{\sin \phi }},}
tangens i kotangens ;
(v)
sec
ϕ
=
1
cos
ϕ
,
csc
ϕ
=
1
sin
ϕ
,
{\displaystyle \sec \phi ={\frac {1}{\cos \phi }},\;\csc \phi ={\frac {1}{\sin \phi }},}
sekans i kosekans .
(g)
vercos
ϕ
=
1
−
sin
ϕ
,
versin
=
1
−
cos
ϕ
,
{\displaystyle \operatorname {vercos} \phi =1-\sin \phi ,\;\operatorname {versin} =1-\cos \phi ,}
kosinus versus i sinus versus .
Funkcije (v), a naročito (g) retko srećemo.
Teorema 1
(a)
O
A
¯
=
cos
ϕ
,
O
C
¯
=
sin
ϕ
,
{\displaystyle {\overline {OA}}=\cos \phi ,\;{\overline {OC}}=\sin \phi ,}
kosinus i sinus;
(b)
B
E
¯
=
tg
ϕ
,
F
G
¯
=
ctg
ϕ
,
{\displaystyle {\overline {BE}}=\operatorname {tg} \phi ,\;{\overline {FG}}=\operatorname {ctg} \phi ,}
tangens i kotangens;
(v)
O
E
¯
=
sec
ϕ
,
O
G
¯
=
csc
ϕ
,
{\displaystyle {\overline {OE}}=\sec \phi ,\;{\overline {OG}}=\csc \phi ,}
sekans i kosekans.
Dokaz
Tačka T sa slike 1. ovde (sl.2.) je tačka D.
(a) Sledi neposredno zbog poluprečnika r = 1.
(b) Uočimo slične trouglove
Δ
E
B
O
∼
Δ
D
A
O
,
{\displaystyle \Delta EBO\sim \Delta DAO,}
odakle
B
E
¯
:
O
B
¯
=
A
D
¯
:
O
A
¯
,
{\displaystyle {\overline {BE}}:{\overline {OB}}={\overline {AD}}:{\overline {OA}},}
tj.
B
E
¯
:
1
=
sin
ϕ
:
cos
ϕ
;
{\displaystyle {\overline {BE}}:1=\sin \phi :\cos \phi ;}
uočimo slične trouglove
Δ
G
F
O
∼
Δ
O
A
D
,
{\displaystyle \Delta GFO\sim \Delta OAD,}
odatle
F
G
¯
:
F
O
¯
=
O
A
¯
:
A
D
¯
,
{\displaystyle {\overline {FG}}:{\overline {FO}}={\overline {OA}}:{\overline {AD}},}
tj.
F
G
¯
:
1
=
cos
ϕ
:
sin
ϕ
.
{\displaystyle {\overline {FG}}:1=\cos \phi :\sin \phi .}
(v) Iz istih sličnih trouglova (b) dobijamo
O
E
¯
:
O
B
¯
=
O
D
¯
:
O
A
¯
,
{\displaystyle {\overline {OE}}:{\overline {OB}}={\overline {OD}}:{\overline {OA}},}
tj.
O
E
¯
:
1
=
1
:
cos
ϕ
;
{\displaystyle {\overline {OE}}:1=1:\cos \phi ;}
zatim
O
G
¯
:
O
F
¯
=
O
D
¯
:
A
D
¯
,
{\displaystyle {\overline {OG}}:{\overline {OF}}={\overline {OD}}:{\overline {AD}},}
tj.
O
G
¯
:
1
=
1
:
sin
ϕ
.
{\displaystyle {\overline {OG}}:1=1:\sin \phi .}
Kraj dokaza.
Ovde će biti analizirane osobine vrednosti trigonometrijskih funkcija za posebne uglove.
Na prethodnoj slici (3) predstavljen je Dekartov pravougli sistem koordinata i tačka D na trigonometrijskoj kružnici. Ugao BOD = φ može neograničeno rasti dok pokretni krak ugla (OD) prolazi redom kroz prvi, drugi, treći i četvrti kvadrant , a zatim ponovo po istom krugu . Dakle, ugao φ može rasti do 360° i dalje. Pri tome se projekcije tačke D na apscisu i ordinatu uvek računaju kao kosinus i sinus ugla φ. To znači da je kosinus pozitivan kada je tačka D u prvom i četvrtom kvadrantu, a da je sinus pozitivan kada je tačka D u prvom i drugom kvadrantu. Detaljno to vidimo u sledećoj tabeli:
Trigonometrijske funkcije po kvadrantima
Kvadrant
1. (0°-90°)
2. (90°-180°)
3. (180°-270°)
4. (270°-360°)
sinus
+
+
-
-
kosinus
+
-
-
+
tangens
+
-
+
-
Svođenje na prvi kvadrant
uredi
Lako je preko trigonometrijske kružnice ili adicionih formula proveriti tačnost formula za svođenje vrednosti trigonometrijskih funkcija na funkcije uglova iz prvog kvadranta:
cos
(
180
o
−
ϕ
)
=
−
cos
ϕ
,
sin
(
180
o
−
ϕ
)
=
sin
ϕ
,
{\displaystyle \cos(180^{o}-\phi )=-\cos \phi ,\;\sin(180^{o}-\phi )=\sin \phi ,}
cos
(
180
o
+
ϕ
)
=
−
cos
ϕ
,
sin
(
180
o
+
ϕ
)
=
−
sin
ϕ
,
{\displaystyle \cos(180^{o}+\phi )=-\cos \phi ,\;\sin(180^{o}+\phi )=-\sin \phi ,}
cos
(
−
ϕ
)
=
cos
ϕ
,
sin
(
−
ϕ
)
=
−
sin
ϕ
.
{\displaystyle \cos(-\phi )=\cos \phi ,\;\sin(-\phi )=-\sin \phi .}
Funkcije kosinus i sinus su periodične sa osnovnim periodom 360°, a funkcija tangens je periodična sa periodom 180°:
cos
(
360
o
+
ϕ
)
=
cos
ϕ
,
sin
(
360
o
+
ϕ
)
=
sin
ϕ
,
tg
(
180
o
+
ϕ
)
=
tg
ϕ
.
{\displaystyle \cos(360^{o}+\phi )=\cos \phi ,\;\sin(360^{o}+\phi )=\sin \phi ,\;\operatorname {tg} (180^{o}+\phi )=\operatorname {tg} \phi .}
Period sinusne i kosinusne funkcije može se naći iz formule:
T
=
2
π
ω
{\displaystyle T={\frac {2\pi }{\omega }}}
Tako je period funkcije
sin
2
α
{\displaystyle \sin {2\alpha }}
jednak
T
=
2
π
2
{\displaystyle T={\frac {2\pi }{2}}}
, odnosno
π
{\displaystyle \pi }
.
Funkcije uglove većih od 360 stepeni prethodnim formulama se svode na funkcije manjih uglova, a zatim dalje, ako je potrebno, na prvi kvadrant, na način vidljiv u sledećoj tabeli:
β
{\displaystyle \beta \,}
π
2
+
α
{\displaystyle {\frac {\pi }{2}}+\alpha }
π
+
α
{\displaystyle \pi +\alpha \,}
3
π
2
+
α
{\displaystyle {\frac {3\,\pi }{2}}+\alpha }
π
2
−
α
{\displaystyle {\frac {\pi }{2}}-\alpha }
π
−
α
{\displaystyle \pi -\alpha \,}
3
π
2
−
α
{\displaystyle {\frac {3\,\pi }{2}}-\alpha }
2
π
−
α
{\displaystyle 2\,\pi -\alpha }
sin
β
{\displaystyle \sin \beta \,}
cos
α
{\displaystyle \cos \alpha \,}
−
sin
α
{\displaystyle -\sin \alpha \,}
−
cos
α
{\displaystyle -\cos \alpha \,}
cos
α
{\displaystyle \cos \alpha \,}
sin
α
{\displaystyle \sin \alpha \,}
−
cos
α
{\displaystyle -\cos \alpha \,}
−
sin
α
{\displaystyle -\sin \alpha \,}
cos
β
{\displaystyle \cos \beta \,}
−
sin
α
{\displaystyle -\sin \alpha \,}
−
cos
α
{\displaystyle -\cos \alpha \,}
sin
α
{\displaystyle \sin \alpha \,}
sin
α
{\displaystyle \sin \alpha \,}
−
cos
α
{\displaystyle -\cos \alpha \,}
−
sin
α
{\displaystyle -\sin \alpha \,}
cos
α
{\displaystyle \cos \alpha \,}
tg
β
{\displaystyle \operatorname {tg} \,\beta }
−
ctg
α
{\displaystyle -\operatorname {ctg} \,\alpha }
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
−
ctg
α
{\displaystyle -\operatorname {ctg} \,\alpha }
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
−
tg
α
{\displaystyle -\operatorname {tg} \,\alpha }
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
ctg
β
{\displaystyle \operatorname {ctg} \,\beta }
−
tg
α
{\displaystyle -\operatorname {tg} \,\alpha }
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
−
tg
α
{\displaystyle -\operatorname {tg} \,\alpha }
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
−
ctg
α
{\displaystyle -\operatorname {ctg} \,\alpha }
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
U opštem slučaju to se može zapisati ovako:
f
(
n
π
+
α
)
=
±
f
(
α
)
{\displaystyle f(n\pi +\alpha )=\pm f(\alpha )}
f
(
n
π
−
α
)
=
±
f
(
α
)
{\displaystyle f(n\pi -\alpha )=\pm f(\alpha )}
f
(
(
2
n
+
1
)
π
2
+
α
)
=
±
g
(
α
)
{\displaystyle f\left({\frac {(2n+1)\pi }{2}}+\alpha \right)=\pm g(\alpha )}
f
(
(
2
n
+
1
)
π
2
−
α
)
=
±
g
(
α
)
{\displaystyle f\left({\frac {(2n+1)\pi }{2}}-\alpha \right)=\pm g(\alpha )}
Pritom je f — proizvoljna trigonometrijska funkcija, g — odgovarajuća joj funkcija (kosinus za sinusa, sinus za kosinus i analogno za ostale funkcije), a n — ceo broj .
Vrednosti trigonometrijskih funkcija
uredi
Vrednosti trigonometrijskih funkcija prikazane na trigonometrijskoj kružnici
Za neke od uglova iz prvog kvadranta se funkcije lakše izračunavaju:
Najčešće vrednosti trigonometrijskih funkcija
ϕ
{\displaystyle \phi \,}
0°
30°
45°
60°
90°
sin
ϕ
{\displaystyle \sin \phi \,}
0
1
2
{\displaystyle {\frac {1}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
1
cos
ϕ
{\displaystyle \cos \phi \,}
1
3
2
{\displaystyle {\frac {\sqrt {3}}{2}}}
2
2
{\displaystyle {\frac {\sqrt {2}}{2}}}
1
2
{\displaystyle {\frac {1}{2}}}
0
tg
ϕ
{\displaystyle \operatorname {tg} \phi }
0
3
3
{\displaystyle {\frac {\sqrt {3}}{3}}}
1
3
{\displaystyle {\sqrt {3}}}
±
∞
{\displaystyle \pm \infty }
Jedan od načina izračunavanja ovih vrednosti je prikazan u pregledu osnovnih uglova . Iz tabele se vidi da su već kod „osnovnih“ uglova trigonometrijske funkcije iracionalni brojevi i da bi slični izrazi za druge uglove mogli biti još složeniji. Jednostavniji od tih složenijih izraza bio bi, na primer
sin
15
o
=
3
−
1
2
2
,
{\displaystyle \sin 15^{o}={\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}},}
i to je najmanji ugao čiji se sinus može predstaviti pisanjem proste algebarske kombinacije racionalnih brojeva i korenova. Vekovima su trigonometrijske vrednosti zapisivane u trigonometrijske tablice , na 5 do 10 decimala , a u poslednje vreme koristi se skoro isključivo računar ili kalkulator .
Vrednosti trigonometrijskih funkcija nekih uglova koje se nešto dužim putem izračunavaju dati su u sledećoj tabeli:
α
{\displaystyle \alpha \,}
π
12
=
15
∘
{\displaystyle {\frac {\pi }{12}}=15^{\circ }}
π
10
=
18
∘
{\displaystyle {\frac {\pi }{10}}=18^{\circ }}
π
8
=
22.5
∘
{\displaystyle {\frac {\pi }{8}}=22.5^{\circ }}
π
5
=
36
∘
{\displaystyle {\frac {\pi }{5}}=36^{\circ }}
3
π
10
=
54
∘
{\displaystyle {\frac {3\,\pi }{10}}=54^{\circ }}
3
π
8
=
67.5
∘
{\displaystyle {\frac {3\,\pi }{8}}=67.5^{\circ }}
2
π
5
=
72
∘
{\displaystyle {\frac {2\,\pi }{5}}=72^{\circ }}
sin
α
{\displaystyle \sin \alpha \,}
3
−
1
2
2
{\displaystyle {\frac {{\sqrt {3}}-1}{2\,{\sqrt {2}}}}}
5
−
1
4
{\displaystyle {\frac {{\sqrt {5}}-1}{4}}}
2
−
2
2
{\displaystyle {\frac {\sqrt {2-{\sqrt {2}}}}{2}}}
5
−
5
2
2
{\displaystyle {\frac {\sqrt {5-{\sqrt {5}}}}{2\,{\sqrt {2}}}}}
5
+
1
4
{\displaystyle {\frac {{\sqrt {5}}+1}{4}}}
2
+
2
2
{\displaystyle {\frac {\sqrt {2+{\sqrt {2}}}}{2}}}
5
+
5
2
2
{\displaystyle {\frac {\sqrt {5+{\sqrt {5}}}}{2\,{\sqrt {2}}}}}
cos
α
{\displaystyle \cos \alpha \,}
3
+
1
2
2
{\displaystyle {\frac {{\sqrt {3}}+1}{2\,{\sqrt {2}}}}}
5
+
5
2
2
{\displaystyle {\frac {\sqrt {5+{\sqrt {5}}}}{2\,{\sqrt {2}}}}}
2
+
2
2
{\displaystyle {\frac {\sqrt {2+{\sqrt {2}}}}{2}}}
5
+
1
4
{\displaystyle {\frac {{\sqrt {5}}+1}{4}}}
5
−
5
2
2
{\displaystyle {\frac {\sqrt {5-{\sqrt {5}}}}{2\,{\sqrt {2}}}}}
2
−
2
2
{\displaystyle {\frac {\sqrt {2-{\sqrt {2}}}}{2}}}
5
−
1
4
{\displaystyle {\frac {{\sqrt {5}}-1}{4}}}
tg
α
{\displaystyle \operatorname {tg} \,\alpha }
2
−
3
{\displaystyle 2-{\sqrt {3}}}
1
−
2
5
{\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}}}}}}
2
−
1
2
+
1
{\displaystyle {\sqrt {\frac {{\sqrt {2}}-1}{{\sqrt {2}}+1}}}}
5
−
2
5
{\displaystyle {\sqrt {5-2\,{\sqrt {5}}}}}
1
+
2
5
{\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}}}}}}
2
+
1
2
−
1
{\displaystyle {\sqrt {\frac {{\sqrt {2}}+1}{{\sqrt {2}}-1}}}}
5
+
2
5
{\displaystyle {\sqrt {5+2\,{\sqrt {5}}}}}
ctg
α
{\displaystyle \operatorname {ctg} \,\alpha }
2
+
3
{\displaystyle 2+{\sqrt {3}}}
5
+
2
5
{\displaystyle {\sqrt {5+2\,{\sqrt {5}}}}}
2
+
1
2
−
1
{\displaystyle {\sqrt {\frac {{\sqrt {2}}+1}{{\sqrt {2}}-1}}}}
1
+
2
5
{\displaystyle {\sqrt {1+{\frac {2}{\sqrt {5}}}}}}
5
−
2
5
{\displaystyle {\sqrt {5-2\,{\sqrt {5}}}}}
2
−
1
2
+
1
{\displaystyle {\sqrt {\frac {{\sqrt {2}}-1}{{\sqrt {2}}+1}}}}
1
−
2
5
{\displaystyle {\sqrt {1-{\frac {2}{\sqrt {5}}}}}}
Kada tačka D jednom obiđe kružnicu pređe put 2π odnosno napravi 360°. Luk dužine π odgovara uglu 180° - ispruženi ugao, π/2 je 90° - pravi ugao, π/3 je 60°, π/4 je 45°, π/6 je 30°, i uopšte luk dužine x radijana odgovara uglu 360x /2π stepeni. Za jedan radijan , h = 1, dobija se ugao 57,2957795... stepeni , tj. u stepenima, minutima i sekundama 57°17'44,8". Jedan stepen ima 60 minuta, a jedna minuta ima 60 sekundi. Izrazi minute i sekunde potiču od latinskih reči: partes minutae primae i partes minutae secundae , tj. prvi mali delovi i drugi mali delovi. Matematički tekstovi za jedinicu ugla podrazumevaju radijan.
Trigonometrijske funkcije se, takođe, mogu predstavljati (beskonačnim) redovima :
sin
x
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
.
.
.
=
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
(
2
n
+
1
)
!
{\displaystyle \sin x=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+...=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}}
cos
x
=
1
−
x
2
2
!
+
x
4
4
!
−
x
6
6
!
+
.
.
.
==
∑
n
=
0
∞
(
−
1
)
n
x
2
n
(
2
n
)
!
{\displaystyle \cos x=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-{\frac {x^{6}}{6!}}+...==\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n}}{(2n)!}}}
Ovi redovi se mogu upotrebiti i za definisanje trigonometrijskih funkcija kompleksnog broja z, i hiperboličkih funkcija .
Imajući u vidu jednakosti
tg
x
=
sin
x
cos
x
,
{\displaystyle \operatorname {tg} \,x={\frac {\sin x}{\cos x}},}
ctg
x
=
cos
x
sin
x
,
{\displaystyle \operatorname {ctg} \,x={\frac {\cos x}{\sin x}},}
sec
x
=
1
cos
x
{\displaystyle \sec x={\frac {1}{\cos x}}}
i
cosec
x
=
1
sin
x
,
{\displaystyle \operatorname {cosec} \,x={\frac {1}{\sin x}},}
u Tejlorov red se mogu razložiti sledeće funkcije:
tg
x
=
x
+
1
3
x
3
+
2
15
x
5
+
17
315
x
7
+
62
2835
x
9
+
⋯
=
∑
n
=
1
∞
2
2
n
(
2
2
n
−
1
)
|
B
2
n
|
(
2
n
)
!
x
2
n
−
1
(
−
π
2
<
x
<
π
2
)
,
{\displaystyle {\operatorname {tg} \,x=x+{\frac {1}{3}}\,x^{3}+{\frac {2}{15}}\,x^{5}+{\frac {17}{315}}\,x^{7}+{\frac {62}{2835}}\,x^{9}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)|B_{2n}|}{(2n)!}}x^{2n-1}\quad \left(-{\frac {\pi }{2}}<x<{\frac {\pi }{2}}\right),}}
ctg
x
=
1
x
−
x
3
−
x
3
45
−
2
x
5
945
−
x
7
4725
−
⋯
=
1
x
+
∑
n
=
1
∞
(
−
1
)
n
2
2
n
|
B
2
n
|
(
2
n
)
!
x
2
n
−
1
(
−
π
<
x
<
π
)
,
{\displaystyle {\operatorname {ctg} \,x={\frac {1}{x}}-{\frac {x}{3}}-{\frac {x^{3}}{45}}-{\frac {2x^{5}}{945}}-{\frac {x^{7}}{4725}}-\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {(-1)^{n}2^{2n}|B_{2n}|}{(2n)!}}\,x^{2n-1}\quad \left(-\pi <x<\pi \right),}}
sec
x
=
1
+
1
2
x
2
+
5
24
x
4
+
61
720
x
6
+
277
8064
x
8
+
⋯
=
1
+
∑
n
=
1
∞
E
n
(
2
n
)
!
x
2
n
,
(
−
π
2
<
x
<
π
2
)
,
{\displaystyle {\sec x=1+{\frac {1}{2}}\,x^{2}+{\frac {5}{24}}\,x^{4}+{\frac {61}{720}}\,x^{6}+{\frac {277}{8064}}\,x^{8}+\cdots =1+\sum _{n=1}^{\infty }{\frac {E_{n}}{(2n)!}}\,x^{2n},\quad \left(-{\frac {\pi }{2}}<x<{\frac {\pi }{2}}\right),}}
csc
x
=
1
x
+
1
6
x
+
7
360
x
3
+
31
15120
x
5
+
127
604800
x
7
+
⋯
=
1
x
+
∑
n
=
1
∞
2
(
2
2
n
−
1
−
1
)
B
n
(
2
n
)
!
x
2
n
−
1
(
−
π
<
x
<
π
)
,
{\displaystyle {\csc x={\frac {1}{x}}+{\frac {1}{6}}\,x+{\frac {7}{360}}\,x^{3}+{\frac {31}{15120}}\,x^{5}+{\frac {127}{604800}}\,x^{7}+\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2\,(2^{2n-1}-1)B_{n}}{(2n)!}}x^{2n-1}\quad \left(-\pi <x<\pi \right),}}
Trigonometrijske funkcije se mogu grafički predstaviti. Na sledećim slikama su prikazani njihovi grafici:
Grafici trigonometrijskih funkcija: sinusa , kosinusa , tangensa , sekansa , kosekansa , kotangensa
Kosinus i sekans su parne funkcije , dok su preostale četiri neparne funkcije :
sin
(
−
α
)
=
−
sin
α
,
{\displaystyle \sin \left(-\alpha \right)=-\sin \alpha \,,}
cos
(
−
α
)
=
cos
α
,
{\displaystyle \cos \left(-\alpha \right)=\cos \alpha \,,}
t
g
(
−
α
)
=
−
t
g
α
,
{\displaystyle \mathop {\mathrm {tg} } \,\left(-\alpha \right)=-\mathop {\mathrm {tg} } \,\alpha \,,}
c
t
g
(
−
α
)
=
−
c
t
g
α
,
{\displaystyle \mathop {\mathrm {ctg} } \,\left(-\alpha \right)=-\mathop {\mathrm {ctg} } \,\alpha \,,}
sec
(
−
α
)
=
sec
α
,
{\displaystyle \sec \left(-\alpha \right)=\sec \alpha \,,}
c
o
s
e
c
(
−
α
)
=
−
c
o
s
e
c
α
.
{\displaystyle \mathop {\mathrm {cosec} } \,\left(-\alpha \right)=-\mathop {\mathrm {cosec} } \,\alpha \,.}
Sl.4. Tetiva je kraća od luka Na slici (4) levo vidimo tetivu
D
A
H
¯
{\displaystyle {\overline {DAH}}}
koja je sigurno kraća od luka
D
B
H
^
.
{\displaystyle {\widehat {DBH}}.}
Tetiva je najkraće rastojanje između dve tačke na kružnici . Zato je polutetiva
D
A
¯
{\displaystyle {\overline {DA}}}
kraća od poluluka
D
B
^
.
{\displaystyle {\widehat {DB}}.}
Trougao OAD, sa oštrim uglom φ je pravougli . Pravi ugao je u temenu A, kateta OA iznosi
cos
ϕ
{\displaystyle \cos \phi }
, kateta DA iznosi
sin
ϕ
{\displaystyle \sin \phi }
, hipotenuza je dužine jedan. Kada je ugao u radijanima i
0
<
ϕ
<
π
2
,
{\displaystyle 0<\phi <{\frac {\pi }{2}},}
tada je
Teorema 1
lim
ϕ
→
0
sin
ϕ
=
0
,
lim
ϕ
→
0
cos
ϕ
=
1.
{\displaystyle \lim _{\phi \to 0}\sin \phi =0,\;\lim _{\phi \to 0}\cos \phi =1.}
Dokaz : Sledi iz
0
<
sin
ϕ
<
D
B
^
=
ϕ
{\displaystyle 0<\sin \phi <{\widehat {DB}}=\phi }
i
0
<
1
−
cos
ϕ
<
A
B
¯
<
D
B
¯
<
D
B
^
=
ϕ
.
{\displaystyle 0<1-\cos \phi <{\overline {AB}}<{\overline {DB}}<{\widehat {DB}}=\phi .}
Kraj.
Kada ugao teži nuli preko pozitivnih vrednosti, sinus je tada pozitivan, a negativan je kada ugao teži nuli preko negativnih vrednosti. Naprotiv, kosinus je u oba slučaja pozitivan. Iz toga proizilaze limesi za kotangens :
lim
x
→
+
0
ctg
x
=
+
∞
,
lim
x
→
−
0
ctg
x
=
−
∞
.
{\displaystyle \lim _{x\to +0}\operatorname {ctg} x=+\infty ,\;\lim _{x\to -0}\operatorname {ctg} x=-\infty .}
Zamenom h sa komplementnim uglom dobićete odgovarajuće limese za tangens .
Sl.5. Trigonometrijski krug
Teorema 2
lim
x
→
0
sin
x
x
=
1.
{\displaystyle \lim _{x\to \ 0}{\frac {\sin x}{x}}=1.}
Dokaz
Na slici (5) desno, površina pravouglog trougla OAD manja je od površine kružnog isečka OBD, a ova opet manja od površine pravouglog trougla OBE. Nazovimo sa h ugao BOE. Otuda
sin
x
cos
x
2
<
x
2
<
tg
x
2
.
{\displaystyle {\frac {\sin x\cos x}{2}}<{\frac {x}{2}}<{\frac {\operatorname {tg} x}{2}}.}
Podelimo li ove nejednakosti sa (pozitivnim)
sin
x
2
,
{\displaystyle {\frac {\sin x}{2}},}
dobićemo
cos
x
<
x
sin
x
<
1
cos
x
,
{\displaystyle \cos x<{\frac {x}{\sin x}}<{\frac {1}{\cos x}},}
a otuda
1
cos
x
>
sin
x
x
>
cos
x
.
{\displaystyle {\frac {1}{\cos x}}>{\frac {\sin x}{x}}>\cos x.}
Sa
x
→
0
{\displaystyle x\to 0}
vredi
cos
x
→
1
,
1
cos
x
→
1
,
{\displaystyle \cos x\to 1,\;{\frac {1}{\cos x}}\to 1,}
pa je
sin
x
x
→
1.
{\displaystyle {\frac {\sin x}{x}}\to 1.}
Sinus je parna funkcija pa je dokaz za negativne uglove isti. Kraj dokaza.
Izvod funkcije f(x) po definiciji je granična vrednost :
f
′
(
x
)
=
lim
Δ
x
→
0
Δ
f
(
x
)
Δ
x
=
lim
Δ
x
→
0
f
(
x
+
Δ
x
)
−
f
(
x
)
Δ
x
.
{\displaystyle f'(x)=\lim _{\Delta x\to 0}{\frac {\Delta f(x)}{\Delta x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x)-f(x)}{\Delta x}}.}
Teorema 3
(a)
(
sin
x
)
′
=
cos
x
,
{\displaystyle (\sin x)'=\cos x,\,}
(b)
(
cos
x
)
′
=
−
sin
x
,
{\displaystyle (\cos x)'=-\sin x,\,}
(v)
(
tg
x
)
′
=
sec
2
x
.
{\displaystyle (\operatorname {tg} x)'=\sec ^{2}x.\,}
(g)
(
ctg
x
)
′
=
−
csc
2
x
.
{\displaystyle (\operatorname {ctg} x)'=-\csc ^{2}x.\,}
Dokaz
(a)
Δ
sin
x
=
sin
(
x
+
Δ
x
)
−
sin
x
=
2
cos
(
x
+
Δ
x
2
)
sin
Δ
x
2
,
{\displaystyle \Delta \sin x=\sin(x+\Delta x)-\sin x=2\cos \left(x+{\frac {\Delta x}{2}}\right)\sin {\frac {\Delta x}{2}},}
pa je
Δ
sin
x
Δ
x
=
cos
(
x
+
Δ
x
2
)
Δ
x
2
→
cos
x
,
{\displaystyle {\frac {\Delta \sin x}{\Delta x}}={\frac {\cos(x+{\frac {\Delta x}{2}})}{\frac {\Delta x}{2}}}\rightarrow \cos x,}
kada
Δ
x
→
0
{\displaystyle \Delta x\rightarrow 0}
(teorema 2).
(b) Zbog
cos
x
=
sin
(
π
2
−
x
)
,
{\displaystyle \cos x=\sin({\frac {\pi }{2}}-x),}
biće
(
cos
x
)
′
=
cos
(
π
2
−
x
)
⋅
(
π
2
−
x
)
′
=
−
cos
(
π
2
−
x
)
=
−
sin
x
.
{\displaystyle (\cos x)'=\cos({\frac {\pi }{2}}-x)\cdot ({\frac {\pi }{2}}-x)'=-\cos({\frac {\pi }{2}}-x)=-\sin x.}
(v) Izvod količnika
(
tg
x
)
′
=
(
sin
x
cos
x
)
′
=
{\displaystyle (\operatorname {tg} x)'=\left({\frac {\sin x}{\cos x}}\right)'=}
=
sin
′
x
cos
x
−
cos
′
x
sin
x
cos
2
x
=
cos
2
x
+
sin
2
x
cos
2
x
=
1
cos
2
x
=
sec
2
x
.
{\displaystyle ={\frac {\sin 'x\cos x-\cos 'x\sin x}{\cos ^{2}x}}={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}={\frac {1}{\cos ^{2}x}}=\sec ^{2}x.}
(g) Izvod količnika
(
ctg
x
)
′
=
(
cos
x
sin
x
)
′
=
{\displaystyle (\operatorname {ctg} x)'=\left({\frac {\cos x}{\sin x}}\right)'=}
=
cos
′
x
sin
x
−
sin
′
x
cos
x
sin
2
x
=
−
sin
2
x
−
cos
2
x
sin
2
x
=
−
1
sin
2
x
=
−
csc
2
x
.
{\displaystyle ={\frac {\cos 'x\sin x-\sin 'x\cos x}{\sin ^{2}x}}={\frac {-\sin ^{2}x-\cos ^{2}x}{\sin ^{2}x}}=-{\frac {1}{\sin ^{2}x}}=-\csc ^{2}x.}
Kraj dokaza 3.
Integrali trigonometrijskih funkcija
uredi
Integrali nekih trigonometrijskih funkcija prikazani su ovde:
f
(
x
)
{\displaystyle \ \ \ \ f(x)}
f
′
(
x
)
{\displaystyle \ \ \ \ f'(x)}
∫
f
(
x
)
d
x
{\displaystyle \int f(x)\,dx}
sin
x
{\displaystyle \,\ \sin x}
cos
x
{\displaystyle \,\ \cos x}
−
cos
x
+
C
{\displaystyle \,\ -\cos x+C}
cos
x
{\displaystyle \,\ \cos x}
−
sin
x
{\displaystyle \,\ -\sin x}
sin
x
+
C
{\displaystyle \,\ \sin x+C}
tan
x
{\displaystyle \,\ \tan x}
sec
2
x
=
1
+
tan
2
x
{\displaystyle \,\ \sec ^{2}x=1+\tan ^{2}x}
−
ln
|
cos
x
|
+
C
{\displaystyle -\ln \left|\cos x\right|+C}
cot
x
{\displaystyle \,\ \cot x}
−
csc
2
x
=
−
(
1
+
cot
2
x
)
{\displaystyle \,\ -\csc ^{2}x=-(1+\cot ^{2}x)}
ln
|
sin
x
|
+
C
{\displaystyle \ln \left|\sin x\right|+C}
sec
x
{\displaystyle \,\ \sec x}
sec
x
tan
x
{\displaystyle \,\ \sec x\tan x}
ln
|
sec
x
+
tan
x
|
+
C
{\displaystyle \ln \left|\sec x+\tan x\right|+C}
csc
x
{\displaystyle \,\ \csc x}
−
csc
x
cot
x
{\displaystyle \,\ -\csc x\cot x}
−
ln
|
csc
x
+
cot
x
|
+
C
{\displaystyle \ -\ln \left|\csc x+\cot x\right|+C}
Pregled skoro svih osobina trigonometrijskih funkcija koje se tiču rešavanja trouglova dat je u prilogu: ravninska trigonometrija .
U posebnom prilogu mogu se pronaći dokazi za adicione formule , gde spadaju i formule za dvostruke uglove , zatim polovine uglova , te predstavljanje zbira i razlike trigonometrijskih funkcija pomoću proizvoda i obratno, i izražavanje ostalih trigonometrijskih funkcija pomoću tangensa polovine ugla.
Takođe, u posebnom prilogu se nalaze trigonometrijske jednačine .
Trigonometrijske funkcije kao rešenja diferencijalnih jednačina
uredi
Trigonometrijske funkcije kao rešenja funkcionalnih jednačina
uredi
Funkcije kosinus i sinus se mogu odrediti kao neprekidna rešenja sistema funkcionalnih jednačina :
{
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
−
g
(
x
)
g
(
y
)
g
(
x
+
y
)
=
g
(
x
)
f
(
y
)
+
f
(
x
)
g
(
y
)
{\displaystyle \left\{{\begin{array}{rcl}f(x+y)&=&f(x)f(y)-g(x)g(y)\\g(x+y)&=&g(x)f(y)+f(x)g(y)\end{array}}\right.}
Inverzne trigonometrijske funkcije
uredi
Inverzne trigonometrijske funkcije su arcsin x (arkus sinus iks), arccos x (arkus kosinus ), arctg x (arkus tangens ), arcctg x (arkus kotangens ). One su inverzne trigonometrijskim funkcijama sin x (sinus iks), cos x (kosinus ), tg x (tangens ), ctg x (kotangens ). Prefiks arkus potiče od latinske reči arcus - luk, ugao. Nazivaju se još i ciklometrijskim funkcijama.
za
−
π
2
≤
y
≤
π
2
,
y
=
arcsin
x
ako
x
=
sin
y
;
za
0
≤
y
≤
π
,
y
=
arccos
x
ako
x
=
cos
y
;
za
−
π
2
<
y
<
π
2
,
y
=
arctan
x
ako
x
=
tan
y
;
za
−
π
2
≤
y
≤
π
2
,
y
≠
0
,
y
=
arccsc
x
ako
x
=
csc
y
;
za
0
≤
y
≤
π
,
y
≠
π
2
,
y
=
arcsec
x
ako
x
=
sec
y
;
za
0
<
y
<
π
,
y
=
arccot
x
ako
x
=
cot
y
.
{\displaystyle {\begin{matrix}{\mbox{za}}&-{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}},&y=\arcsin x&{\mbox{ako}}&x=\sin y\,;\\\\{\mbox{za}}&0\leq y\leq \pi ,&y=\arccos x&{\mbox{ako}}&x=\cos y\,;\\\\{\mbox{za}}&-{\frac {\pi }{2}}<y<{\frac {\pi }{2}},&y=\arctan x&{\mbox{ako}}&x=\tan y\,;\\\\{\mbox{za}}&-{\frac {\pi }{2}}\leq y\leq {\frac {\pi }{2}},y\neq 0,&y=\operatorname {arccsc} x&{\mbox{ako}}&x=\csc y\,;\\\\{\mbox{za}}&0\leq y\leq \pi ,y\neq {\frac {\pi }{2}},&y=\operatorname {arcsec} x&{\mbox{ako}}&x=\sec y\,;\\\\{\mbox{za}}&0<y<\pi ,&y=\operatorname {arccot} x&{\mbox{ako}}&x=\cot y\,.\end{matrix}}}
Primena trigonometrije i trigonometrijskih funkcija u fizici je jako velika.
Tako se na primer prilično koriste u analizi prostiranja talasa, opisivanju harmonijskih oscilacija kao periodičnog kretanja, predstavljanja naizmenične struje itd.