[go: nahoru, domu]

1/*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 *	Syed Mohammed Khasim	<x0khasim@ti.com>
10 *	Madhusudhan		<madhu.cr@ti.com>
11 *	Mohit Jalori		<mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18#include <linux/module.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/debugfs.h>
22#include <linux/dmaengine.h>
23#include <linux/seq_file.h>
24#include <linux/sizes.h>
25#include <linux/interrupt.h>
26#include <linux/delay.h>
27#include <linux/dma-mapping.h>
28#include <linux/platform_device.h>
29#include <linux/timer.h>
30#include <linux/clk.h>
31#include <linux/of.h>
32#include <linux/of_irq.h>
33#include <linux/of_gpio.h>
34#include <linux/of_device.h>
35#include <linux/omap-dmaengine.h>
36#include <linux/mmc/host.h>
37#include <linux/mmc/core.h>
38#include <linux/mmc/mmc.h>
39#include <linux/io.h>
40#include <linux/irq.h>
41#include <linux/gpio.h>
42#include <linux/regulator/consumer.h>
43#include <linux/pinctrl/consumer.h>
44#include <linux/pm_runtime.h>
45#include <linux/platform_data/mmc-omap.h>
46
47/* OMAP HSMMC Host Controller Registers */
48#define OMAP_HSMMC_SYSSTATUS	0x0014
49#define OMAP_HSMMC_CON		0x002C
50#define OMAP_HSMMC_SDMASA	0x0100
51#define OMAP_HSMMC_BLK		0x0104
52#define OMAP_HSMMC_ARG		0x0108
53#define OMAP_HSMMC_CMD		0x010C
54#define OMAP_HSMMC_RSP10	0x0110
55#define OMAP_HSMMC_RSP32	0x0114
56#define OMAP_HSMMC_RSP54	0x0118
57#define OMAP_HSMMC_RSP76	0x011C
58#define OMAP_HSMMC_DATA		0x0120
59#define OMAP_HSMMC_PSTATE	0x0124
60#define OMAP_HSMMC_HCTL		0x0128
61#define OMAP_HSMMC_SYSCTL	0x012C
62#define OMAP_HSMMC_STAT		0x0130
63#define OMAP_HSMMC_IE		0x0134
64#define OMAP_HSMMC_ISE		0x0138
65#define OMAP_HSMMC_AC12		0x013C
66#define OMAP_HSMMC_CAPA		0x0140
67
68#define VS18			(1 << 26)
69#define VS30			(1 << 25)
70#define HSS			(1 << 21)
71#define SDVS18			(0x5 << 9)
72#define SDVS30			(0x6 << 9)
73#define SDVS33			(0x7 << 9)
74#define SDVS_MASK		0x00000E00
75#define SDVSCLR			0xFFFFF1FF
76#define SDVSDET			0x00000400
77#define AUTOIDLE		0x1
78#define SDBP			(1 << 8)
79#define DTO			0xe
80#define ICE			0x1
81#define ICS			0x2
82#define CEN			(1 << 2)
83#define CLKD_MAX		0x3FF		/* max clock divisor: 1023 */
84#define CLKD_MASK		0x0000FFC0
85#define CLKD_SHIFT		6
86#define DTO_MASK		0x000F0000
87#define DTO_SHIFT		16
88#define INIT_STREAM		(1 << 1)
89#define ACEN_ACMD23		(2 << 2)
90#define DP_SELECT		(1 << 21)
91#define DDIR			(1 << 4)
92#define DMAE			0x1
93#define MSBS			(1 << 5)
94#define BCE			(1 << 1)
95#define FOUR_BIT		(1 << 1)
96#define HSPE			(1 << 2)
97#define IWE			(1 << 24)
98#define DDR			(1 << 19)
99#define CLKEXTFREE		(1 << 16)
100#define CTPL			(1 << 11)
101#define DW8			(1 << 5)
102#define OD			0x1
103#define STAT_CLEAR		0xFFFFFFFF
104#define INIT_STREAM_CMD		0x00000000
105#define DUAL_VOLT_OCR_BIT	7
106#define SRC			(1 << 25)
107#define SRD			(1 << 26)
108#define SOFTRESET		(1 << 1)
109
110/* PSTATE */
111#define DLEV_DAT(x)		(1 << (20 + (x)))
112
113/* Interrupt masks for IE and ISE register */
114#define CC_EN			(1 << 0)
115#define TC_EN			(1 << 1)
116#define BWR_EN			(1 << 4)
117#define BRR_EN			(1 << 5)
118#define CIRQ_EN			(1 << 8)
119#define ERR_EN			(1 << 15)
120#define CTO_EN			(1 << 16)
121#define CCRC_EN			(1 << 17)
122#define CEB_EN			(1 << 18)
123#define CIE_EN			(1 << 19)
124#define DTO_EN			(1 << 20)
125#define DCRC_EN			(1 << 21)
126#define DEB_EN			(1 << 22)
127#define ACE_EN			(1 << 24)
128#define CERR_EN			(1 << 28)
129#define BADA_EN			(1 << 29)
130
131#define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
132		DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
133		BRR_EN | BWR_EN | TC_EN | CC_EN)
134
135#define CNI	(1 << 7)
136#define ACIE	(1 << 4)
137#define ACEB	(1 << 3)
138#define ACCE	(1 << 2)
139#define ACTO	(1 << 1)
140#define ACNE	(1 << 0)
141
142#define MMC_AUTOSUSPEND_DELAY	100
143#define MMC_TIMEOUT_MS		20		/* 20 mSec */
144#define MMC_TIMEOUT_US		20000		/* 20000 micro Sec */
145#define OMAP_MMC_MIN_CLOCK	400000
146#define OMAP_MMC_MAX_CLOCK	52000000
147#define DRIVER_NAME		"omap_hsmmc"
148
149#define VDD_1V8			1800000		/* 180000 uV */
150#define VDD_3V0			3000000		/* 300000 uV */
151#define VDD_165_195		(ffs(MMC_VDD_165_195) - 1)
152
153/*
154 * One controller can have multiple slots, like on some omap boards using
155 * omap.c controller driver. Luckily this is not currently done on any known
156 * omap_hsmmc.c device.
157 */
158#define mmc_slot(host)		(host->pdata->slots[host->slot_id])
159
160/*
161 * MMC Host controller read/write API's
162 */
163#define OMAP_HSMMC_READ(base, reg)	\
164	__raw_readl((base) + OMAP_HSMMC_##reg)
165
166#define OMAP_HSMMC_WRITE(base, reg, val) \
167	__raw_writel((val), (base) + OMAP_HSMMC_##reg)
168
169struct omap_hsmmc_next {
170	unsigned int	dma_len;
171	s32		cookie;
172};
173
174struct omap_hsmmc_host {
175	struct	device		*dev;
176	struct	mmc_host	*mmc;
177	struct	mmc_request	*mrq;
178	struct	mmc_command	*cmd;
179	struct	mmc_data	*data;
180	struct	clk		*fclk;
181	struct	clk		*dbclk;
182	/*
183	 * vcc == configured supply
184	 * vcc_aux == optional
185	 *   -	MMC1, supply for DAT4..DAT7
186	 *   -	MMC2/MMC2, external level shifter voltage supply, for
187	 *	chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
188	 */
189	struct	regulator	*vcc;
190	struct	regulator	*vcc_aux;
191	struct	regulator	*pbias;
192	bool			pbias_enabled;
193	void	__iomem		*base;
194	resource_size_t		mapbase;
195	spinlock_t		irq_lock; /* Prevent races with irq handler */
196	unsigned int		dma_len;
197	unsigned int		dma_sg_idx;
198	unsigned char		bus_mode;
199	unsigned char		power_mode;
200	int			suspended;
201	u32			con;
202	u32			hctl;
203	u32			sysctl;
204	u32			capa;
205	int			irq;
206	int			wake_irq;
207	int			use_dma, dma_ch;
208	struct dma_chan		*tx_chan;
209	struct dma_chan		*rx_chan;
210	int			slot_id;
211	int			response_busy;
212	int			context_loss;
213	int			protect_card;
214	int			reqs_blocked;
215	int			use_reg;
216	int			req_in_progress;
217	unsigned long		clk_rate;
218	unsigned int		flags;
219#define AUTO_CMD23		(1 << 0)        /* Auto CMD23 support */
220#define HSMMC_SDIO_IRQ_ENABLED	(1 << 1)        /* SDIO irq enabled */
221#define HSMMC_WAKE_IRQ_ENABLED	(1 << 2)
222	struct omap_hsmmc_next	next_data;
223	struct	omap_mmc_platform_data	*pdata;
224};
225
226struct omap_mmc_of_data {
227	u32 reg_offset;
228	u8 controller_flags;
229};
230
231static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
232
233static int omap_hsmmc_card_detect(struct device *dev, int slot)
234{
235	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
236	struct omap_mmc_platform_data *mmc = host->pdata;
237
238	/* NOTE: assumes card detect signal is active-low */
239	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
240}
241
242static int omap_hsmmc_get_wp(struct device *dev, int slot)
243{
244	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
245	struct omap_mmc_platform_data *mmc = host->pdata;
246
247	/* NOTE: assumes write protect signal is active-high */
248	return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
249}
250
251static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
252{
253	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
254	struct omap_mmc_platform_data *mmc = host->pdata;
255
256	/* NOTE: assumes card detect signal is active-low */
257	return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
258}
259
260#ifdef CONFIG_PM
261
262static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
263{
264	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
265	struct omap_mmc_platform_data *mmc = host->pdata;
266
267	disable_irq(mmc->slots[0].card_detect_irq);
268	return 0;
269}
270
271static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
272{
273	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
274	struct omap_mmc_platform_data *mmc = host->pdata;
275
276	enable_irq(mmc->slots[0].card_detect_irq);
277	return 0;
278}
279
280#else
281
282#define omap_hsmmc_suspend_cdirq	NULL
283#define omap_hsmmc_resume_cdirq		NULL
284
285#endif
286
287#ifdef CONFIG_REGULATOR
288
289static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
290				   int vdd)
291{
292	struct omap_hsmmc_host *host =
293		platform_get_drvdata(to_platform_device(dev));
294	int ret = 0;
295
296	/*
297	 * If we don't see a Vcc regulator, assume it's a fixed
298	 * voltage always-on regulator.
299	 */
300	if (!host->vcc)
301		return 0;
302
303	if (mmc_slot(host).before_set_reg)
304		mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
305
306	if (host->pbias) {
307		if (host->pbias_enabled == 1) {
308			ret = regulator_disable(host->pbias);
309			if (!ret)
310				host->pbias_enabled = 0;
311		}
312		regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
313	}
314
315	/*
316	 * Assume Vcc regulator is used only to power the card ... OMAP
317	 * VDDS is used to power the pins, optionally with a transceiver to
318	 * support cards using voltages other than VDDS (1.8V nominal).  When a
319	 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
320	 *
321	 * In some cases this regulator won't support enable/disable;
322	 * e.g. it's a fixed rail for a WLAN chip.
323	 *
324	 * In other cases vcc_aux switches interface power.  Example, for
325	 * eMMC cards it represents VccQ.  Sometimes transceivers or SDIO
326	 * chips/cards need an interface voltage rail too.
327	 */
328	if (power_on) {
329		if (host->vcc)
330			ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
331		/* Enable interface voltage rail, if needed */
332		if (ret == 0 && host->vcc_aux) {
333			ret = regulator_enable(host->vcc_aux);
334			if (ret < 0 && host->vcc)
335				ret = mmc_regulator_set_ocr(host->mmc,
336							host->vcc, 0);
337		}
338	} else {
339		/* Shut down the rail */
340		if (host->vcc_aux)
341			ret = regulator_disable(host->vcc_aux);
342		if (host->vcc) {
343			/* Then proceed to shut down the local regulator */
344			ret = mmc_regulator_set_ocr(host->mmc,
345						host->vcc, 0);
346		}
347	}
348
349	if (host->pbias) {
350		if (vdd <= VDD_165_195)
351			ret = regulator_set_voltage(host->pbias, VDD_1V8,
352								VDD_1V8);
353		else
354			ret = regulator_set_voltage(host->pbias, VDD_3V0,
355								VDD_3V0);
356		if (ret < 0)
357			goto error_set_power;
358
359		if (host->pbias_enabled == 0) {
360			ret = regulator_enable(host->pbias);
361			if (!ret)
362				host->pbias_enabled = 1;
363		}
364	}
365
366	if (mmc_slot(host).after_set_reg)
367		mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
368
369error_set_power:
370	return ret;
371}
372
373static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
374{
375	struct regulator *reg;
376	int ocr_value = 0;
377
378	reg = devm_regulator_get(host->dev, "vmmc");
379	if (IS_ERR(reg)) {
380		dev_err(host->dev, "unable to get vmmc regulator %ld\n",
381			PTR_ERR(reg));
382		return PTR_ERR(reg);
383	} else {
384		host->vcc = reg;
385		ocr_value = mmc_regulator_get_ocrmask(reg);
386		if (!mmc_slot(host).ocr_mask) {
387			mmc_slot(host).ocr_mask = ocr_value;
388		} else {
389			if (!(mmc_slot(host).ocr_mask & ocr_value)) {
390				dev_err(host->dev, "ocrmask %x is not supported\n",
391					mmc_slot(host).ocr_mask);
392				mmc_slot(host).ocr_mask = 0;
393				return -EINVAL;
394			}
395		}
396	}
397	mmc_slot(host).set_power = omap_hsmmc_set_power;
398
399	/* Allow an aux regulator */
400	reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
401	host->vcc_aux = IS_ERR(reg) ? NULL : reg;
402
403	reg = devm_regulator_get_optional(host->dev, "pbias");
404	host->pbias = IS_ERR(reg) ? NULL : reg;
405
406	/* For eMMC do not power off when not in sleep state */
407	if (mmc_slot(host).no_regulator_off_init)
408		return 0;
409	/*
410	 * To disable boot_on regulator, enable regulator
411	 * to increase usecount and then disable it.
412	 */
413	if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
414	    (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
415		int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
416
417		mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd);
418		mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
419	}
420
421	return 0;
422}
423
424static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
425{
426	mmc_slot(host).set_power = NULL;
427}
428
429static inline int omap_hsmmc_have_reg(void)
430{
431	return 1;
432}
433
434#else
435
436static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
437{
438	return -EINVAL;
439}
440
441static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
442{
443}
444
445static inline int omap_hsmmc_have_reg(void)
446{
447	return 0;
448}
449
450#endif
451
452static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
453{
454	int ret;
455
456	if (gpio_is_valid(pdata->slots[0].switch_pin)) {
457		if (pdata->slots[0].cover)
458			pdata->slots[0].get_cover_state =
459					omap_hsmmc_get_cover_state;
460		else
461			pdata->slots[0].card_detect = omap_hsmmc_card_detect;
462		pdata->slots[0].card_detect_irq =
463				gpio_to_irq(pdata->slots[0].switch_pin);
464		ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
465		if (ret)
466			return ret;
467		ret = gpio_direction_input(pdata->slots[0].switch_pin);
468		if (ret)
469			goto err_free_sp;
470	} else
471		pdata->slots[0].switch_pin = -EINVAL;
472
473	if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
474		pdata->slots[0].get_ro = omap_hsmmc_get_wp;
475		ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
476		if (ret)
477			goto err_free_cd;
478		ret = gpio_direction_input(pdata->slots[0].gpio_wp);
479		if (ret)
480			goto err_free_wp;
481	} else
482		pdata->slots[0].gpio_wp = -EINVAL;
483
484	return 0;
485
486err_free_wp:
487	gpio_free(pdata->slots[0].gpio_wp);
488err_free_cd:
489	if (gpio_is_valid(pdata->slots[0].switch_pin))
490err_free_sp:
491		gpio_free(pdata->slots[0].switch_pin);
492	return ret;
493}
494
495static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
496{
497	if (gpio_is_valid(pdata->slots[0].gpio_wp))
498		gpio_free(pdata->slots[0].gpio_wp);
499	if (gpio_is_valid(pdata->slots[0].switch_pin))
500		gpio_free(pdata->slots[0].switch_pin);
501}
502
503/*
504 * Start clock to the card
505 */
506static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
507{
508	OMAP_HSMMC_WRITE(host->base, SYSCTL,
509		OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
510}
511
512/*
513 * Stop clock to the card
514 */
515static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
516{
517	OMAP_HSMMC_WRITE(host->base, SYSCTL,
518		OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
519	if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
520		dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
521}
522
523static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
524				  struct mmc_command *cmd)
525{
526	u32 irq_mask = INT_EN_MASK;
527	unsigned long flags;
528
529	if (host->use_dma)
530		irq_mask &= ~(BRR_EN | BWR_EN);
531
532	/* Disable timeout for erases */
533	if (cmd->opcode == MMC_ERASE)
534		irq_mask &= ~DTO_EN;
535
536	spin_lock_irqsave(&host->irq_lock, flags);
537	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
538	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
539
540	/* latch pending CIRQ, but don't signal MMC core */
541	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
542		irq_mask |= CIRQ_EN;
543	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
544	spin_unlock_irqrestore(&host->irq_lock, flags);
545}
546
547static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
548{
549	u32 irq_mask = 0;
550	unsigned long flags;
551
552	spin_lock_irqsave(&host->irq_lock, flags);
553	/* no transfer running but need to keep cirq if enabled */
554	if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
555		irq_mask |= CIRQ_EN;
556	OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
557	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
558	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
559	spin_unlock_irqrestore(&host->irq_lock, flags);
560}
561
562/* Calculate divisor for the given clock frequency */
563static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
564{
565	u16 dsor = 0;
566
567	if (ios->clock) {
568		dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
569		if (dsor > CLKD_MAX)
570			dsor = CLKD_MAX;
571	}
572
573	return dsor;
574}
575
576static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
577{
578	struct mmc_ios *ios = &host->mmc->ios;
579	unsigned long regval;
580	unsigned long timeout;
581	unsigned long clkdiv;
582
583	dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
584
585	omap_hsmmc_stop_clock(host);
586
587	regval = OMAP_HSMMC_READ(host->base, SYSCTL);
588	regval = regval & ~(CLKD_MASK | DTO_MASK);
589	clkdiv = calc_divisor(host, ios);
590	regval = regval | (clkdiv << 6) | (DTO << 16);
591	OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
592	OMAP_HSMMC_WRITE(host->base, SYSCTL,
593		OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
594
595	/* Wait till the ICS bit is set */
596	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
597	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
598		&& time_before(jiffies, timeout))
599		cpu_relax();
600
601	/*
602	 * Enable High-Speed Support
603	 * Pre-Requisites
604	 *	- Controller should support High-Speed-Enable Bit
605	 *	- Controller should not be using DDR Mode
606	 *	- Controller should advertise that it supports High Speed
607	 *	  in capabilities register
608	 *	- MMC/SD clock coming out of controller > 25MHz
609	 */
610	if ((mmc_slot(host).features & HSMMC_HAS_HSPE_SUPPORT) &&
611	    (ios->timing != MMC_TIMING_MMC_DDR52) &&
612	    ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
613		regval = OMAP_HSMMC_READ(host->base, HCTL);
614		if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
615			regval |= HSPE;
616		else
617			regval &= ~HSPE;
618
619		OMAP_HSMMC_WRITE(host->base, HCTL, regval);
620	}
621
622	omap_hsmmc_start_clock(host);
623}
624
625static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
626{
627	struct mmc_ios *ios = &host->mmc->ios;
628	u32 con;
629
630	con = OMAP_HSMMC_READ(host->base, CON);
631	if (ios->timing == MMC_TIMING_MMC_DDR52)
632		con |= DDR;	/* configure in DDR mode */
633	else
634		con &= ~DDR;
635	switch (ios->bus_width) {
636	case MMC_BUS_WIDTH_8:
637		OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
638		break;
639	case MMC_BUS_WIDTH_4:
640		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
641		OMAP_HSMMC_WRITE(host->base, HCTL,
642			OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
643		break;
644	case MMC_BUS_WIDTH_1:
645		OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
646		OMAP_HSMMC_WRITE(host->base, HCTL,
647			OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
648		break;
649	}
650}
651
652static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
653{
654	struct mmc_ios *ios = &host->mmc->ios;
655	u32 con;
656
657	con = OMAP_HSMMC_READ(host->base, CON);
658	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
659		OMAP_HSMMC_WRITE(host->base, CON, con | OD);
660	else
661		OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
662}
663
664#ifdef CONFIG_PM
665
666/*
667 * Restore the MMC host context, if it was lost as result of a
668 * power state change.
669 */
670static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
671{
672	struct mmc_ios *ios = &host->mmc->ios;
673	u32 hctl, capa;
674	unsigned long timeout;
675
676	if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
677	    host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
678	    host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
679	    host->capa == OMAP_HSMMC_READ(host->base, CAPA))
680		return 0;
681
682	host->context_loss++;
683
684	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
685		if (host->power_mode != MMC_POWER_OFF &&
686		    (1 << ios->vdd) <= MMC_VDD_23_24)
687			hctl = SDVS18;
688		else
689			hctl = SDVS30;
690		capa = VS30 | VS18;
691	} else {
692		hctl = SDVS18;
693		capa = VS18;
694	}
695
696	if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
697		hctl |= IWE;
698
699	OMAP_HSMMC_WRITE(host->base, HCTL,
700			OMAP_HSMMC_READ(host->base, HCTL) | hctl);
701
702	OMAP_HSMMC_WRITE(host->base, CAPA,
703			OMAP_HSMMC_READ(host->base, CAPA) | capa);
704
705	OMAP_HSMMC_WRITE(host->base, HCTL,
706			OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
707
708	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
709	while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
710		&& time_before(jiffies, timeout))
711		;
712
713	OMAP_HSMMC_WRITE(host->base, ISE, 0);
714	OMAP_HSMMC_WRITE(host->base, IE, 0);
715	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
716
717	/* Do not initialize card-specific things if the power is off */
718	if (host->power_mode == MMC_POWER_OFF)
719		goto out;
720
721	omap_hsmmc_set_bus_width(host);
722
723	omap_hsmmc_set_clock(host);
724
725	omap_hsmmc_set_bus_mode(host);
726
727out:
728	dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
729		host->context_loss);
730	return 0;
731}
732
733/*
734 * Save the MMC host context (store the number of power state changes so far).
735 */
736static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
737{
738	host->con =  OMAP_HSMMC_READ(host->base, CON);
739	host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
740	host->sysctl =  OMAP_HSMMC_READ(host->base, SYSCTL);
741	host->capa = OMAP_HSMMC_READ(host->base, CAPA);
742}
743
744#else
745
746static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
747{
748	return 0;
749}
750
751static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
752{
753}
754
755#endif
756
757/*
758 * Send init stream sequence to card
759 * before sending IDLE command
760 */
761static void send_init_stream(struct omap_hsmmc_host *host)
762{
763	int reg = 0;
764	unsigned long timeout;
765
766	if (host->protect_card)
767		return;
768
769	disable_irq(host->irq);
770
771	OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
772	OMAP_HSMMC_WRITE(host->base, CON,
773		OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
774	OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
775
776	timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
777	while ((reg != CC_EN) && time_before(jiffies, timeout))
778		reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
779
780	OMAP_HSMMC_WRITE(host->base, CON,
781		OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
782
783	OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
784	OMAP_HSMMC_READ(host->base, STAT);
785
786	enable_irq(host->irq);
787}
788
789static inline
790int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
791{
792	int r = 1;
793
794	if (mmc_slot(host).get_cover_state)
795		r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
796	return r;
797}
798
799static ssize_t
800omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
801			   char *buf)
802{
803	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
804	struct omap_hsmmc_host *host = mmc_priv(mmc);
805
806	return sprintf(buf, "%s\n",
807			omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
808}
809
810static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
811
812static ssize_t
813omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
814			char *buf)
815{
816	struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
817	struct omap_hsmmc_host *host = mmc_priv(mmc);
818
819	return sprintf(buf, "%s\n", mmc_slot(host).name);
820}
821
822static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
823
824/*
825 * Configure the response type and send the cmd.
826 */
827static void
828omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
829	struct mmc_data *data)
830{
831	int cmdreg = 0, resptype = 0, cmdtype = 0;
832
833	dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
834		mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
835	host->cmd = cmd;
836
837	omap_hsmmc_enable_irq(host, cmd);
838
839	host->response_busy = 0;
840	if (cmd->flags & MMC_RSP_PRESENT) {
841		if (cmd->flags & MMC_RSP_136)
842			resptype = 1;
843		else if (cmd->flags & MMC_RSP_BUSY) {
844			resptype = 3;
845			host->response_busy = 1;
846		} else
847			resptype = 2;
848	}
849
850	/*
851	 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
852	 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
853	 * a val of 0x3, rest 0x0.
854	 */
855	if (cmd == host->mrq->stop)
856		cmdtype = 0x3;
857
858	cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
859
860	if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
861	    host->mrq->sbc) {
862		cmdreg |= ACEN_ACMD23;
863		OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
864	}
865	if (data) {
866		cmdreg |= DP_SELECT | MSBS | BCE;
867		if (data->flags & MMC_DATA_READ)
868			cmdreg |= DDIR;
869		else
870			cmdreg &= ~(DDIR);
871	}
872
873	if (host->use_dma)
874		cmdreg |= DMAE;
875
876	host->req_in_progress = 1;
877
878	OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
879	OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
880}
881
882static int
883omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
884{
885	if (data->flags & MMC_DATA_WRITE)
886		return DMA_TO_DEVICE;
887	else
888		return DMA_FROM_DEVICE;
889}
890
891static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
892	struct mmc_data *data)
893{
894	return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
895}
896
897static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
898{
899	int dma_ch;
900	unsigned long flags;
901
902	spin_lock_irqsave(&host->irq_lock, flags);
903	host->req_in_progress = 0;
904	dma_ch = host->dma_ch;
905	spin_unlock_irqrestore(&host->irq_lock, flags);
906
907	omap_hsmmc_disable_irq(host);
908	/* Do not complete the request if DMA is still in progress */
909	if (mrq->data && host->use_dma && dma_ch != -1)
910		return;
911	host->mrq = NULL;
912	mmc_request_done(host->mmc, mrq);
913}
914
915/*
916 * Notify the transfer complete to MMC core
917 */
918static void
919omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
920{
921	if (!data) {
922		struct mmc_request *mrq = host->mrq;
923
924		/* TC before CC from CMD6 - don't know why, but it happens */
925		if (host->cmd && host->cmd->opcode == 6 &&
926		    host->response_busy) {
927			host->response_busy = 0;
928			return;
929		}
930
931		omap_hsmmc_request_done(host, mrq);
932		return;
933	}
934
935	host->data = NULL;
936
937	if (!data->error)
938		data->bytes_xfered += data->blocks * (data->blksz);
939	else
940		data->bytes_xfered = 0;
941
942	if (data->stop && (data->error || !host->mrq->sbc))
943		omap_hsmmc_start_command(host, data->stop, NULL);
944	else
945		omap_hsmmc_request_done(host, data->mrq);
946}
947
948/*
949 * Notify the core about command completion
950 */
951static void
952omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
953{
954	if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
955	    !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
956		host->cmd = NULL;
957		omap_hsmmc_start_dma_transfer(host);
958		omap_hsmmc_start_command(host, host->mrq->cmd,
959						host->mrq->data);
960		return;
961	}
962
963	host->cmd = NULL;
964
965	if (cmd->flags & MMC_RSP_PRESENT) {
966		if (cmd->flags & MMC_RSP_136) {
967			/* response type 2 */
968			cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
969			cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
970			cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
971			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
972		} else {
973			/* response types 1, 1b, 3, 4, 5, 6 */
974			cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
975		}
976	}
977	if ((host->data == NULL && !host->response_busy) || cmd->error)
978		omap_hsmmc_request_done(host, host->mrq);
979}
980
981/*
982 * DMA clean up for command errors
983 */
984static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
985{
986	int dma_ch;
987	unsigned long flags;
988
989	host->data->error = errno;
990
991	spin_lock_irqsave(&host->irq_lock, flags);
992	dma_ch = host->dma_ch;
993	host->dma_ch = -1;
994	spin_unlock_irqrestore(&host->irq_lock, flags);
995
996	if (host->use_dma && dma_ch != -1) {
997		struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
998
999		dmaengine_terminate_all(chan);
1000		dma_unmap_sg(chan->device->dev,
1001			host->data->sg, host->data->sg_len,
1002			omap_hsmmc_get_dma_dir(host, host->data));
1003
1004		host->data->host_cookie = 0;
1005	}
1006	host->data = NULL;
1007}
1008
1009/*
1010 * Readable error output
1011 */
1012#ifdef CONFIG_MMC_DEBUG
1013static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1014{
1015	/* --- means reserved bit without definition at documentation */
1016	static const char *omap_hsmmc_status_bits[] = {
1017		"CC"  , "TC"  , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1018		"CIRQ",	"OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1019		"CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1020		"ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1021	};
1022	char res[256];
1023	char *buf = res;
1024	int len, i;
1025
1026	len = sprintf(buf, "MMC IRQ 0x%x :", status);
1027	buf += len;
1028
1029	for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1030		if (status & (1 << i)) {
1031			len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1032			buf += len;
1033		}
1034
1035	dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1036}
1037#else
1038static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1039					     u32 status)
1040{
1041}
1042#endif  /* CONFIG_MMC_DEBUG */
1043
1044/*
1045 * MMC controller internal state machines reset
1046 *
1047 * Used to reset command or data internal state machines, using respectively
1048 *  SRC or SRD bit of SYSCTL register
1049 * Can be called from interrupt context
1050 */
1051static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1052						   unsigned long bit)
1053{
1054	unsigned long i = 0;
1055	unsigned long limit = MMC_TIMEOUT_US;
1056
1057	OMAP_HSMMC_WRITE(host->base, SYSCTL,
1058			 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1059
1060	/*
1061	 * OMAP4 ES2 and greater has an updated reset logic.
1062	 * Monitor a 0->1 transition first
1063	 */
1064	if (mmc_slot(host).features & HSMMC_HAS_UPDATED_RESET) {
1065		while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1066					&& (i++ < limit))
1067			udelay(1);
1068	}
1069	i = 0;
1070
1071	while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1072		(i++ < limit))
1073		udelay(1);
1074
1075	if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1076		dev_err(mmc_dev(host->mmc),
1077			"Timeout waiting on controller reset in %s\n",
1078			__func__);
1079}
1080
1081static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1082					int err, int end_cmd)
1083{
1084	if (end_cmd) {
1085		omap_hsmmc_reset_controller_fsm(host, SRC);
1086		if (host->cmd)
1087			host->cmd->error = err;
1088	}
1089
1090	if (host->data) {
1091		omap_hsmmc_reset_controller_fsm(host, SRD);
1092		omap_hsmmc_dma_cleanup(host, err);
1093	} else if (host->mrq && host->mrq->cmd)
1094		host->mrq->cmd->error = err;
1095}
1096
1097static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1098{
1099	struct mmc_data *data;
1100	int end_cmd = 0, end_trans = 0;
1101	int error = 0;
1102
1103	data = host->data;
1104	dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1105
1106	if (status & ERR_EN) {
1107		omap_hsmmc_dbg_report_irq(host, status);
1108
1109		if (status & (CTO_EN | CCRC_EN))
1110			end_cmd = 1;
1111		if (status & (CTO_EN | DTO_EN))
1112			hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1113		else if (status & (CCRC_EN | DCRC_EN))
1114			hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1115
1116		if (status & ACE_EN) {
1117			u32 ac12;
1118			ac12 = OMAP_HSMMC_READ(host->base, AC12);
1119			if (!(ac12 & ACNE) && host->mrq->sbc) {
1120				end_cmd = 1;
1121				if (ac12 & ACTO)
1122					error =  -ETIMEDOUT;
1123				else if (ac12 & (ACCE | ACEB | ACIE))
1124					error = -EILSEQ;
1125				host->mrq->sbc->error = error;
1126				hsmmc_command_incomplete(host, error, end_cmd);
1127			}
1128			dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1129		}
1130		if (host->data || host->response_busy) {
1131			end_trans = !end_cmd;
1132			host->response_busy = 0;
1133		}
1134	}
1135
1136	OMAP_HSMMC_WRITE(host->base, STAT, status);
1137	if (end_cmd || ((status & CC_EN) && host->cmd))
1138		omap_hsmmc_cmd_done(host, host->cmd);
1139	if ((end_trans || (status & TC_EN)) && host->mrq)
1140		omap_hsmmc_xfer_done(host, data);
1141}
1142
1143/*
1144 * MMC controller IRQ handler
1145 */
1146static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1147{
1148	struct omap_hsmmc_host *host = dev_id;
1149	int status;
1150
1151	status = OMAP_HSMMC_READ(host->base, STAT);
1152	while (status & (INT_EN_MASK | CIRQ_EN)) {
1153		if (host->req_in_progress)
1154			omap_hsmmc_do_irq(host, status);
1155
1156		if (status & CIRQ_EN)
1157			mmc_signal_sdio_irq(host->mmc);
1158
1159		/* Flush posted write */
1160		status = OMAP_HSMMC_READ(host->base, STAT);
1161	}
1162
1163	return IRQ_HANDLED;
1164}
1165
1166static irqreturn_t omap_hsmmc_wake_irq(int irq, void *dev_id)
1167{
1168	struct omap_hsmmc_host *host = dev_id;
1169
1170	/* cirq is level triggered, disable to avoid infinite loop */
1171	spin_lock(&host->irq_lock);
1172	if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
1173		disable_irq_nosync(host->wake_irq);
1174		host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
1175	}
1176	spin_unlock(&host->irq_lock);
1177	pm_request_resume(host->dev); /* no use counter */
1178
1179	return IRQ_HANDLED;
1180}
1181
1182static void set_sd_bus_power(struct omap_hsmmc_host *host)
1183{
1184	unsigned long i;
1185
1186	OMAP_HSMMC_WRITE(host->base, HCTL,
1187			 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1188	for (i = 0; i < loops_per_jiffy; i++) {
1189		if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1190			break;
1191		cpu_relax();
1192	}
1193}
1194
1195/*
1196 * Switch MMC interface voltage ... only relevant for MMC1.
1197 *
1198 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1199 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1200 * Some chips, like eMMC ones, use internal transceivers.
1201 */
1202static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1203{
1204	u32 reg_val = 0;
1205	int ret;
1206
1207	/* Disable the clocks */
1208	pm_runtime_put_sync(host->dev);
1209	if (host->dbclk)
1210		clk_disable_unprepare(host->dbclk);
1211
1212	/* Turn the power off */
1213	ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1214
1215	/* Turn the power ON with given VDD 1.8 or 3.0v */
1216	if (!ret)
1217		ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1218					       vdd);
1219	pm_runtime_get_sync(host->dev);
1220	if (host->dbclk)
1221		clk_prepare_enable(host->dbclk);
1222
1223	if (ret != 0)
1224		goto err;
1225
1226	OMAP_HSMMC_WRITE(host->base, HCTL,
1227		OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1228	reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1229
1230	/*
1231	 * If a MMC dual voltage card is detected, the set_ios fn calls
1232	 * this fn with VDD bit set for 1.8V. Upon card removal from the
1233	 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1234	 *
1235	 * Cope with a bit of slop in the range ... per data sheets:
1236	 *  - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1237	 *    but recommended values are 1.71V to 1.89V
1238	 *  - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1239	 *    but recommended values are 2.7V to 3.3V
1240	 *
1241	 * Board setup code shouldn't permit anything very out-of-range.
1242	 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1243	 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1244	 */
1245	if ((1 << vdd) <= MMC_VDD_23_24)
1246		reg_val |= SDVS18;
1247	else
1248		reg_val |= SDVS30;
1249
1250	OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1251	set_sd_bus_power(host);
1252
1253	return 0;
1254err:
1255	dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1256	return ret;
1257}
1258
1259/* Protect the card while the cover is open */
1260static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1261{
1262	if (!mmc_slot(host).get_cover_state)
1263		return;
1264
1265	host->reqs_blocked = 0;
1266	if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1267		if (host->protect_card) {
1268			dev_info(host->dev, "%s: cover is closed, "
1269					 "card is now accessible\n",
1270					 mmc_hostname(host->mmc));
1271			host->protect_card = 0;
1272		}
1273	} else {
1274		if (!host->protect_card) {
1275			dev_info(host->dev, "%s: cover is open, "
1276					 "card is now inaccessible\n",
1277					 mmc_hostname(host->mmc));
1278			host->protect_card = 1;
1279		}
1280	}
1281}
1282
1283/*
1284 * irq handler to notify the core about card insertion/removal
1285 */
1286static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1287{
1288	struct omap_hsmmc_host *host = dev_id;
1289	struct omap_mmc_slot_data *slot = &mmc_slot(host);
1290	int carddetect;
1291
1292	sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1293
1294	if (slot->card_detect)
1295		carddetect = slot->card_detect(host->dev, host->slot_id);
1296	else {
1297		omap_hsmmc_protect_card(host);
1298		carddetect = -ENOSYS;
1299	}
1300
1301	if (carddetect)
1302		mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1303	else
1304		mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1305	return IRQ_HANDLED;
1306}
1307
1308static void omap_hsmmc_dma_callback(void *param)
1309{
1310	struct omap_hsmmc_host *host = param;
1311	struct dma_chan *chan;
1312	struct mmc_data *data;
1313	int req_in_progress;
1314
1315	spin_lock_irq(&host->irq_lock);
1316	if (host->dma_ch < 0) {
1317		spin_unlock_irq(&host->irq_lock);
1318		return;
1319	}
1320
1321	data = host->mrq->data;
1322	chan = omap_hsmmc_get_dma_chan(host, data);
1323	if (!data->host_cookie)
1324		dma_unmap_sg(chan->device->dev,
1325			     data->sg, data->sg_len,
1326			     omap_hsmmc_get_dma_dir(host, data));
1327
1328	req_in_progress = host->req_in_progress;
1329	host->dma_ch = -1;
1330	spin_unlock_irq(&host->irq_lock);
1331
1332	/* If DMA has finished after TC, complete the request */
1333	if (!req_in_progress) {
1334		struct mmc_request *mrq = host->mrq;
1335
1336		host->mrq = NULL;
1337		mmc_request_done(host->mmc, mrq);
1338	}
1339}
1340
1341static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1342				       struct mmc_data *data,
1343				       struct omap_hsmmc_next *next,
1344				       struct dma_chan *chan)
1345{
1346	int dma_len;
1347
1348	if (!next && data->host_cookie &&
1349	    data->host_cookie != host->next_data.cookie) {
1350		dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1351		       " host->next_data.cookie %d\n",
1352		       __func__, data->host_cookie, host->next_data.cookie);
1353		data->host_cookie = 0;
1354	}
1355
1356	/* Check if next job is already prepared */
1357	if (next || data->host_cookie != host->next_data.cookie) {
1358		dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1359				     omap_hsmmc_get_dma_dir(host, data));
1360
1361	} else {
1362		dma_len = host->next_data.dma_len;
1363		host->next_data.dma_len = 0;
1364	}
1365
1366
1367	if (dma_len == 0)
1368		return -EINVAL;
1369
1370	if (next) {
1371		next->dma_len = dma_len;
1372		data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1373	} else
1374		host->dma_len = dma_len;
1375
1376	return 0;
1377}
1378
1379/*
1380 * Routine to configure and start DMA for the MMC card
1381 */
1382static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1383					struct mmc_request *req)
1384{
1385	struct dma_slave_config cfg;
1386	struct dma_async_tx_descriptor *tx;
1387	int ret = 0, i;
1388	struct mmc_data *data = req->data;
1389	struct dma_chan *chan;
1390
1391	/* Sanity check: all the SG entries must be aligned by block size. */
1392	for (i = 0; i < data->sg_len; i++) {
1393		struct scatterlist *sgl;
1394
1395		sgl = data->sg + i;
1396		if (sgl->length % data->blksz)
1397			return -EINVAL;
1398	}
1399	if ((data->blksz % 4) != 0)
1400		/* REVISIT: The MMC buffer increments only when MSB is written.
1401		 * Return error for blksz which is non multiple of four.
1402		 */
1403		return -EINVAL;
1404
1405	BUG_ON(host->dma_ch != -1);
1406
1407	chan = omap_hsmmc_get_dma_chan(host, data);
1408
1409	cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1410	cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1411	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1412	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1413	cfg.src_maxburst = data->blksz / 4;
1414	cfg.dst_maxburst = data->blksz / 4;
1415
1416	ret = dmaengine_slave_config(chan, &cfg);
1417	if (ret)
1418		return ret;
1419
1420	ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1421	if (ret)
1422		return ret;
1423
1424	tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1425		data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1426		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1427	if (!tx) {
1428		dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1429		/* FIXME: cleanup */
1430		return -1;
1431	}
1432
1433	tx->callback = omap_hsmmc_dma_callback;
1434	tx->callback_param = host;
1435
1436	/* Does not fail */
1437	dmaengine_submit(tx);
1438
1439	host->dma_ch = 1;
1440
1441	return 0;
1442}
1443
1444static void set_data_timeout(struct omap_hsmmc_host *host,
1445			     unsigned int timeout_ns,
1446			     unsigned int timeout_clks)
1447{
1448	unsigned int timeout, cycle_ns;
1449	uint32_t reg, clkd, dto = 0;
1450
1451	reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1452	clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1453	if (clkd == 0)
1454		clkd = 1;
1455
1456	cycle_ns = 1000000000 / (host->clk_rate / clkd);
1457	timeout = timeout_ns / cycle_ns;
1458	timeout += timeout_clks;
1459	if (timeout) {
1460		while ((timeout & 0x80000000) == 0) {
1461			dto += 1;
1462			timeout <<= 1;
1463		}
1464		dto = 31 - dto;
1465		timeout <<= 1;
1466		if (timeout && dto)
1467			dto += 1;
1468		if (dto >= 13)
1469			dto -= 13;
1470		else
1471			dto = 0;
1472		if (dto > 14)
1473			dto = 14;
1474	}
1475
1476	reg &= ~DTO_MASK;
1477	reg |= dto << DTO_SHIFT;
1478	OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1479}
1480
1481static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1482{
1483	struct mmc_request *req = host->mrq;
1484	struct dma_chan *chan;
1485
1486	if (!req->data)
1487		return;
1488	OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1489				| (req->data->blocks << 16));
1490	set_data_timeout(host, req->data->timeout_ns,
1491				req->data->timeout_clks);
1492	chan = omap_hsmmc_get_dma_chan(host, req->data);
1493	dma_async_issue_pending(chan);
1494}
1495
1496/*
1497 * Configure block length for MMC/SD cards and initiate the transfer.
1498 */
1499static int
1500omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1501{
1502	int ret;
1503	host->data = req->data;
1504
1505	if (req->data == NULL) {
1506		OMAP_HSMMC_WRITE(host->base, BLK, 0);
1507		/*
1508		 * Set an arbitrary 100ms data timeout for commands with
1509		 * busy signal.
1510		 */
1511		if (req->cmd->flags & MMC_RSP_BUSY)
1512			set_data_timeout(host, 100000000U, 0);
1513		return 0;
1514	}
1515
1516	if (host->use_dma) {
1517		ret = omap_hsmmc_setup_dma_transfer(host, req);
1518		if (ret != 0) {
1519			dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1520			return ret;
1521		}
1522	}
1523	return 0;
1524}
1525
1526static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1527				int err)
1528{
1529	struct omap_hsmmc_host *host = mmc_priv(mmc);
1530	struct mmc_data *data = mrq->data;
1531
1532	if (host->use_dma && data->host_cookie) {
1533		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1534
1535		dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1536			     omap_hsmmc_get_dma_dir(host, data));
1537		data->host_cookie = 0;
1538	}
1539}
1540
1541static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1542			       bool is_first_req)
1543{
1544	struct omap_hsmmc_host *host = mmc_priv(mmc);
1545
1546	if (mrq->data->host_cookie) {
1547		mrq->data->host_cookie = 0;
1548		return ;
1549	}
1550
1551	if (host->use_dma) {
1552		struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1553
1554		if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1555						&host->next_data, c))
1556			mrq->data->host_cookie = 0;
1557	}
1558}
1559
1560/*
1561 * Request function. for read/write operation
1562 */
1563static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1564{
1565	struct omap_hsmmc_host *host = mmc_priv(mmc);
1566	int err;
1567
1568	BUG_ON(host->req_in_progress);
1569	BUG_ON(host->dma_ch != -1);
1570	if (host->protect_card) {
1571		if (host->reqs_blocked < 3) {
1572			/*
1573			 * Ensure the controller is left in a consistent
1574			 * state by resetting the command and data state
1575			 * machines.
1576			 */
1577			omap_hsmmc_reset_controller_fsm(host, SRD);
1578			omap_hsmmc_reset_controller_fsm(host, SRC);
1579			host->reqs_blocked += 1;
1580		}
1581		req->cmd->error = -EBADF;
1582		if (req->data)
1583			req->data->error = -EBADF;
1584		req->cmd->retries = 0;
1585		mmc_request_done(mmc, req);
1586		return;
1587	} else if (host->reqs_blocked)
1588		host->reqs_blocked = 0;
1589	WARN_ON(host->mrq != NULL);
1590	host->mrq = req;
1591	host->clk_rate = clk_get_rate(host->fclk);
1592	err = omap_hsmmc_prepare_data(host, req);
1593	if (err) {
1594		req->cmd->error = err;
1595		if (req->data)
1596			req->data->error = err;
1597		host->mrq = NULL;
1598		mmc_request_done(mmc, req);
1599		return;
1600	}
1601	if (req->sbc && !(host->flags & AUTO_CMD23)) {
1602		omap_hsmmc_start_command(host, req->sbc, NULL);
1603		return;
1604	}
1605
1606	omap_hsmmc_start_dma_transfer(host);
1607	omap_hsmmc_start_command(host, req->cmd, req->data);
1608}
1609
1610/* Routine to configure clock values. Exposed API to core */
1611static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1612{
1613	struct omap_hsmmc_host *host = mmc_priv(mmc);
1614	int do_send_init_stream = 0;
1615
1616	pm_runtime_get_sync(host->dev);
1617
1618	if (ios->power_mode != host->power_mode) {
1619		switch (ios->power_mode) {
1620		case MMC_POWER_OFF:
1621			mmc_slot(host).set_power(host->dev, host->slot_id,
1622						 0, 0);
1623			break;
1624		case MMC_POWER_UP:
1625			mmc_slot(host).set_power(host->dev, host->slot_id,
1626						 1, ios->vdd);
1627			break;
1628		case MMC_POWER_ON:
1629			do_send_init_stream = 1;
1630			break;
1631		}
1632		host->power_mode = ios->power_mode;
1633	}
1634
1635	/* FIXME: set registers based only on changes to ios */
1636
1637	omap_hsmmc_set_bus_width(host);
1638
1639	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1640		/* Only MMC1 can interface at 3V without some flavor
1641		 * of external transceiver; but they all handle 1.8V.
1642		 */
1643		if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1644			(ios->vdd == DUAL_VOLT_OCR_BIT)) {
1645				/*
1646				 * The mmc_select_voltage fn of the core does
1647				 * not seem to set the power_mode to
1648				 * MMC_POWER_UP upon recalculating the voltage.
1649				 * vdd 1.8v.
1650				 */
1651			if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1652				dev_dbg(mmc_dev(host->mmc),
1653						"Switch operation failed\n");
1654		}
1655	}
1656
1657	omap_hsmmc_set_clock(host);
1658
1659	if (do_send_init_stream)
1660		send_init_stream(host);
1661
1662	omap_hsmmc_set_bus_mode(host);
1663
1664	pm_runtime_put_autosuspend(host->dev);
1665}
1666
1667static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1668{
1669	struct omap_hsmmc_host *host = mmc_priv(mmc);
1670
1671	if (!mmc_slot(host).card_detect)
1672		return -ENOSYS;
1673	return mmc_slot(host).card_detect(host->dev, host->slot_id);
1674}
1675
1676static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1677{
1678	struct omap_hsmmc_host *host = mmc_priv(mmc);
1679
1680	if (!mmc_slot(host).get_ro)
1681		return -ENOSYS;
1682	return mmc_slot(host).get_ro(host->dev, 0);
1683}
1684
1685static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1686{
1687	struct omap_hsmmc_host *host = mmc_priv(mmc);
1688
1689	if (mmc_slot(host).init_card)
1690		mmc_slot(host).init_card(card);
1691}
1692
1693static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1694{
1695	struct omap_hsmmc_host *host = mmc_priv(mmc);
1696	u32 irq_mask, con;
1697	unsigned long flags;
1698
1699	spin_lock_irqsave(&host->irq_lock, flags);
1700
1701	con = OMAP_HSMMC_READ(host->base, CON);
1702	irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1703	if (enable) {
1704		host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1705		irq_mask |= CIRQ_EN;
1706		con |= CTPL | CLKEXTFREE;
1707	} else {
1708		host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1709		irq_mask &= ~CIRQ_EN;
1710		con &= ~(CTPL | CLKEXTFREE);
1711	}
1712	OMAP_HSMMC_WRITE(host->base, CON, con);
1713	OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1714
1715	/*
1716	 * if enable, piggy back detection on current request
1717	 * but always disable immediately
1718	 */
1719	if (!host->req_in_progress || !enable)
1720		OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1721
1722	/* flush posted write */
1723	OMAP_HSMMC_READ(host->base, IE);
1724
1725	spin_unlock_irqrestore(&host->irq_lock, flags);
1726}
1727
1728static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1729{
1730	struct mmc_host *mmc = host->mmc;
1731	int ret;
1732
1733	/*
1734	 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1735	 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1736	 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1737	 * with functional clock disabled.
1738	 */
1739	if (!host->dev->of_node || !host->wake_irq)
1740		return -ENODEV;
1741
1742	/* Prevent auto-enabling of IRQ */
1743	irq_set_status_flags(host->wake_irq, IRQ_NOAUTOEN);
1744	ret = devm_request_irq(host->dev, host->wake_irq, omap_hsmmc_wake_irq,
1745			       IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1746			       mmc_hostname(mmc), host);
1747	if (ret) {
1748		dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1749		goto err;
1750	}
1751
1752	/*
1753	 * Some omaps don't have wake-up path from deeper idle states
1754	 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1755	 */
1756	if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1757		struct pinctrl *p = devm_pinctrl_get(host->dev);
1758		if (!p) {
1759			ret = -ENODEV;
1760			goto err_free_irq;
1761		}
1762		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1763			dev_info(host->dev, "missing default pinctrl state\n");
1764			devm_pinctrl_put(p);
1765			ret = -EINVAL;
1766			goto err_free_irq;
1767		}
1768
1769		if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1770			dev_info(host->dev, "missing idle pinctrl state\n");
1771			devm_pinctrl_put(p);
1772			ret = -EINVAL;
1773			goto err_free_irq;
1774		}
1775		devm_pinctrl_put(p);
1776	}
1777
1778	OMAP_HSMMC_WRITE(host->base, HCTL,
1779			 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1780	return 0;
1781
1782err_free_irq:
1783	devm_free_irq(host->dev, host->wake_irq, host);
1784err:
1785	dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1786	host->wake_irq = 0;
1787	return ret;
1788}
1789
1790static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1791{
1792	u32 hctl, capa, value;
1793
1794	/* Only MMC1 supports 3.0V */
1795	if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1796		hctl = SDVS30;
1797		capa = VS30 | VS18;
1798	} else {
1799		hctl = SDVS18;
1800		capa = VS18;
1801	}
1802
1803	value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1804	OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1805
1806	value = OMAP_HSMMC_READ(host->base, CAPA);
1807	OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1808
1809	/* Set SD bus power bit */
1810	set_sd_bus_power(host);
1811}
1812
1813static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1814{
1815	struct omap_hsmmc_host *host = mmc_priv(mmc);
1816
1817	pm_runtime_get_sync(host->dev);
1818
1819	return 0;
1820}
1821
1822static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1823{
1824	struct omap_hsmmc_host *host = mmc_priv(mmc);
1825
1826	pm_runtime_mark_last_busy(host->dev);
1827	pm_runtime_put_autosuspend(host->dev);
1828
1829	return 0;
1830}
1831
1832static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1833				     unsigned int direction, int blk_size)
1834{
1835	/* This controller can't do multiblock reads due to hw bugs */
1836	if (direction == MMC_DATA_READ)
1837		return 1;
1838
1839	return blk_size;
1840}
1841
1842static struct mmc_host_ops omap_hsmmc_ops = {
1843	.enable = omap_hsmmc_enable_fclk,
1844	.disable = omap_hsmmc_disable_fclk,
1845	.post_req = omap_hsmmc_post_req,
1846	.pre_req = omap_hsmmc_pre_req,
1847	.request = omap_hsmmc_request,
1848	.set_ios = omap_hsmmc_set_ios,
1849	.get_cd = omap_hsmmc_get_cd,
1850	.get_ro = omap_hsmmc_get_ro,
1851	.init_card = omap_hsmmc_init_card,
1852	.enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1853};
1854
1855#ifdef CONFIG_DEBUG_FS
1856
1857static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1858{
1859	struct mmc_host *mmc = s->private;
1860	struct omap_hsmmc_host *host = mmc_priv(mmc);
1861
1862	seq_printf(s, "mmc%d:\n", mmc->index);
1863	seq_printf(s, "sdio irq mode\t%s\n",
1864		   (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1865
1866	if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1867		seq_printf(s, "sdio irq \t%s\n",
1868			   (host->flags & HSMMC_SDIO_IRQ_ENABLED) ?  "enabled"
1869			   : "disabled");
1870	}
1871	seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1872
1873	pm_runtime_get_sync(host->dev);
1874	seq_puts(s, "\nregs:\n");
1875	seq_printf(s, "CON:\t\t0x%08x\n",
1876			OMAP_HSMMC_READ(host->base, CON));
1877	seq_printf(s, "PSTATE:\t\t0x%08x\n",
1878		   OMAP_HSMMC_READ(host->base, PSTATE));
1879	seq_printf(s, "HCTL:\t\t0x%08x\n",
1880			OMAP_HSMMC_READ(host->base, HCTL));
1881	seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1882			OMAP_HSMMC_READ(host->base, SYSCTL));
1883	seq_printf(s, "IE:\t\t0x%08x\n",
1884			OMAP_HSMMC_READ(host->base, IE));
1885	seq_printf(s, "ISE:\t\t0x%08x\n",
1886			OMAP_HSMMC_READ(host->base, ISE));
1887	seq_printf(s, "CAPA:\t\t0x%08x\n",
1888			OMAP_HSMMC_READ(host->base, CAPA));
1889
1890	pm_runtime_mark_last_busy(host->dev);
1891	pm_runtime_put_autosuspend(host->dev);
1892
1893	return 0;
1894}
1895
1896static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1897{
1898	return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1899}
1900
1901static const struct file_operations mmc_regs_fops = {
1902	.open           = omap_hsmmc_regs_open,
1903	.read           = seq_read,
1904	.llseek         = seq_lseek,
1905	.release        = single_release,
1906};
1907
1908static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1909{
1910	if (mmc->debugfs_root)
1911		debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1912			mmc, &mmc_regs_fops);
1913}
1914
1915#else
1916
1917static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1918{
1919}
1920
1921#endif
1922
1923#ifdef CONFIG_OF
1924static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1925	/* See 35xx errata 2.1.1.128 in SPRZ278F */
1926	.controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1927};
1928
1929static const struct omap_mmc_of_data omap4_mmc_of_data = {
1930	.reg_offset = 0x100,
1931};
1932static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1933	.reg_offset = 0x100,
1934	.controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1935};
1936
1937static const struct of_device_id omap_mmc_of_match[] = {
1938	{
1939		.compatible = "ti,omap2-hsmmc",
1940	},
1941	{
1942		.compatible = "ti,omap3-pre-es3-hsmmc",
1943		.data = &omap3_pre_es3_mmc_of_data,
1944	},
1945	{
1946		.compatible = "ti,omap3-hsmmc",
1947	},
1948	{
1949		.compatible = "ti,omap4-hsmmc",
1950		.data = &omap4_mmc_of_data,
1951	},
1952	{
1953		.compatible = "ti,am33xx-hsmmc",
1954		.data = &am33xx_mmc_of_data,
1955	},
1956	{},
1957};
1958MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1959
1960static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1961{
1962	struct omap_mmc_platform_data *pdata;
1963	struct device_node *np = dev->of_node;
1964	u32 bus_width, max_freq;
1965	int cd_gpio, wp_gpio;
1966
1967	cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1968	wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1969	if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1970		return ERR_PTR(-EPROBE_DEFER);
1971
1972	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1973	if (!pdata)
1974		return ERR_PTR(-ENOMEM); /* out of memory */
1975
1976	if (of_find_property(np, "ti,dual-volt", NULL))
1977		pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1978
1979	/* This driver only supports 1 slot */
1980	pdata->nr_slots = 1;
1981	pdata->slots[0].switch_pin = cd_gpio;
1982	pdata->slots[0].gpio_wp = wp_gpio;
1983
1984	if (of_find_property(np, "ti,non-removable", NULL)) {
1985		pdata->slots[0].nonremovable = true;
1986		pdata->slots[0].no_regulator_off_init = true;
1987	}
1988	of_property_read_u32(np, "bus-width", &bus_width);
1989	if (bus_width == 4)
1990		pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1991	else if (bus_width == 8)
1992		pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1993
1994	if (of_find_property(np, "ti,needs-special-reset", NULL))
1995		pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1996
1997	if (!of_property_read_u32(np, "max-frequency", &max_freq))
1998		pdata->max_freq = max_freq;
1999
2000	if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
2001		pdata->slots[0].features |= HSMMC_HAS_HSPE_SUPPORT;
2002
2003	if (of_find_property(np, "keep-power-in-suspend", NULL))
2004		pdata->slots[0].pm_caps |= MMC_PM_KEEP_POWER;
2005
2006	if (of_find_property(np, "enable-sdio-wakeup", NULL))
2007		pdata->slots[0].pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
2008
2009	return pdata;
2010}
2011#else
2012static inline struct omap_mmc_platform_data
2013			*of_get_hsmmc_pdata(struct device *dev)
2014{
2015	return ERR_PTR(-EINVAL);
2016}
2017#endif
2018
2019static int omap_hsmmc_probe(struct platform_device *pdev)
2020{
2021	struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
2022	struct mmc_host *mmc;
2023	struct omap_hsmmc_host *host = NULL;
2024	struct resource *res;
2025	int ret, irq;
2026	const struct of_device_id *match;
2027	dma_cap_mask_t mask;
2028	unsigned tx_req, rx_req;
2029	const struct omap_mmc_of_data *data;
2030	void __iomem *base;
2031
2032	match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2033	if (match) {
2034		pdata = of_get_hsmmc_pdata(&pdev->dev);
2035
2036		if (IS_ERR(pdata))
2037			return PTR_ERR(pdata);
2038
2039		if (match->data) {
2040			data = match->data;
2041			pdata->reg_offset = data->reg_offset;
2042			pdata->controller_flags |= data->controller_flags;
2043		}
2044	}
2045
2046	if (pdata == NULL) {
2047		dev_err(&pdev->dev, "Platform Data is missing\n");
2048		return -ENXIO;
2049	}
2050
2051	if (pdata->nr_slots == 0) {
2052		dev_err(&pdev->dev, "No Slots\n");
2053		return -ENXIO;
2054	}
2055
2056	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2057	irq = platform_get_irq(pdev, 0);
2058	if (res == NULL || irq < 0)
2059		return -ENXIO;
2060
2061	base = devm_ioremap_resource(&pdev->dev, res);
2062	if (IS_ERR(base))
2063		return PTR_ERR(base);
2064
2065	ret = omap_hsmmc_gpio_init(pdata);
2066	if (ret)
2067		goto err;
2068
2069	mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2070	if (!mmc) {
2071		ret = -ENOMEM;
2072		goto err_alloc;
2073	}
2074
2075	host		= mmc_priv(mmc);
2076	host->mmc	= mmc;
2077	host->pdata	= pdata;
2078	host->dev	= &pdev->dev;
2079	host->use_dma	= 1;
2080	host->dma_ch	= -1;
2081	host->irq	= irq;
2082	host->slot_id	= 0;
2083	host->mapbase	= res->start + pdata->reg_offset;
2084	host->base	= base + pdata->reg_offset;
2085	host->power_mode = MMC_POWER_OFF;
2086	host->next_data.cookie = 1;
2087	host->pbias_enabled = 0;
2088
2089	platform_set_drvdata(pdev, host);
2090
2091	if (pdev->dev.of_node)
2092		host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2093
2094	mmc->ops	= &omap_hsmmc_ops;
2095
2096	mmc->f_min = OMAP_MMC_MIN_CLOCK;
2097
2098	if (pdata->max_freq > 0)
2099		mmc->f_max = pdata->max_freq;
2100	else
2101		mmc->f_max = OMAP_MMC_MAX_CLOCK;
2102
2103	spin_lock_init(&host->irq_lock);
2104
2105	host->fclk = devm_clk_get(&pdev->dev, "fck");
2106	if (IS_ERR(host->fclk)) {
2107		ret = PTR_ERR(host->fclk);
2108		host->fclk = NULL;
2109		goto err1;
2110	}
2111
2112	if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2113		dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2114		omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2115	}
2116
2117	pm_runtime_enable(host->dev);
2118	pm_runtime_get_sync(host->dev);
2119	pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2120	pm_runtime_use_autosuspend(host->dev);
2121
2122	omap_hsmmc_context_save(host);
2123
2124	host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2125	/*
2126	 * MMC can still work without debounce clock.
2127	 */
2128	if (IS_ERR(host->dbclk)) {
2129		host->dbclk = NULL;
2130	} else if (clk_prepare_enable(host->dbclk) != 0) {
2131		dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2132		host->dbclk = NULL;
2133	}
2134
2135	/* Since we do only SG emulation, we can have as many segs
2136	 * as we want. */
2137	mmc->max_segs = 1024;
2138
2139	mmc->max_blk_size = 512;       /* Block Length at max can be 1024 */
2140	mmc->max_blk_count = 0xFFFF;    /* No. of Blocks is 16 bits */
2141	mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2142	mmc->max_seg_size = mmc->max_req_size;
2143
2144	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2145		     MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2146
2147	mmc->caps |= mmc_slot(host).caps;
2148	if (mmc->caps & MMC_CAP_8_BIT_DATA)
2149		mmc->caps |= MMC_CAP_4_BIT_DATA;
2150
2151	if (mmc_slot(host).nonremovable)
2152		mmc->caps |= MMC_CAP_NONREMOVABLE;
2153
2154	mmc->pm_caps = mmc_slot(host).pm_caps;
2155
2156	omap_hsmmc_conf_bus_power(host);
2157
2158	if (!pdev->dev.of_node) {
2159		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2160		if (!res) {
2161			dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2162			ret = -ENXIO;
2163			goto err_irq;
2164		}
2165		tx_req = res->start;
2166
2167		res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2168		if (!res) {
2169			dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2170			ret = -ENXIO;
2171			goto err_irq;
2172		}
2173		rx_req = res->start;
2174	}
2175
2176	dma_cap_zero(mask);
2177	dma_cap_set(DMA_SLAVE, mask);
2178
2179	host->rx_chan =
2180		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2181						 &rx_req, &pdev->dev, "rx");
2182
2183	if (!host->rx_chan) {
2184		dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2185		ret = -ENXIO;
2186		goto err_irq;
2187	}
2188
2189	host->tx_chan =
2190		dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2191						 &tx_req, &pdev->dev, "tx");
2192
2193	if (!host->tx_chan) {
2194		dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2195		ret = -ENXIO;
2196		goto err_irq;
2197	}
2198
2199	/* Request IRQ for MMC operations */
2200	ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2201			mmc_hostname(mmc), host);
2202	if (ret) {
2203		dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2204		goto err_irq;
2205	}
2206
2207	if (pdata->init != NULL) {
2208		if (pdata->init(&pdev->dev) != 0) {
2209			dev_err(mmc_dev(host->mmc),
2210				"Unable to configure MMC IRQs\n");
2211			goto err_irq;
2212		}
2213	}
2214
2215	if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
2216		ret = omap_hsmmc_reg_get(host);
2217		if (ret)
2218			goto err_reg;
2219		host->use_reg = 1;
2220	}
2221
2222	mmc->ocr_avail = mmc_slot(host).ocr_mask;
2223
2224	/* Request IRQ for card detect */
2225	if ((mmc_slot(host).card_detect_irq)) {
2226		ret = devm_request_threaded_irq(&pdev->dev,
2227						mmc_slot(host).card_detect_irq,
2228						NULL, omap_hsmmc_detect,
2229					   IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2230					   mmc_hostname(mmc), host);
2231		if (ret) {
2232			dev_err(mmc_dev(host->mmc),
2233				"Unable to grab MMC CD IRQ\n");
2234			goto err_irq_cd;
2235		}
2236		pdata->suspend = omap_hsmmc_suspend_cdirq;
2237		pdata->resume = omap_hsmmc_resume_cdirq;
2238	}
2239
2240	omap_hsmmc_disable_irq(host);
2241
2242	/*
2243	 * For now, only support SDIO interrupt if we have a separate
2244	 * wake-up interrupt configured from device tree. This is because
2245	 * the wake-up interrupt is needed for idle state and some
2246	 * platforms need special quirks. And we don't want to add new
2247	 * legacy mux platform init code callbacks any longer as we
2248	 * are moving to DT based booting anyways.
2249	 */
2250	ret = omap_hsmmc_configure_wake_irq(host);
2251	if (!ret)
2252		mmc->caps |= MMC_CAP_SDIO_IRQ;
2253
2254	omap_hsmmc_protect_card(host);
2255
2256	mmc_add_host(mmc);
2257
2258	if (mmc_slot(host).name != NULL) {
2259		ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2260		if (ret < 0)
2261			goto err_slot_name;
2262	}
2263	if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
2264		ret = device_create_file(&mmc->class_dev,
2265					&dev_attr_cover_switch);
2266		if (ret < 0)
2267			goto err_slot_name;
2268	}
2269
2270	omap_hsmmc_debugfs(mmc);
2271	pm_runtime_mark_last_busy(host->dev);
2272	pm_runtime_put_autosuspend(host->dev);
2273
2274	return 0;
2275
2276err_slot_name:
2277	mmc_remove_host(mmc);
2278err_irq_cd:
2279	if (host->use_reg)
2280		omap_hsmmc_reg_put(host);
2281err_reg:
2282	if (host->pdata->cleanup)
2283		host->pdata->cleanup(&pdev->dev);
2284err_irq:
2285	if (host->tx_chan)
2286		dma_release_channel(host->tx_chan);
2287	if (host->rx_chan)
2288		dma_release_channel(host->rx_chan);
2289	pm_runtime_put_sync(host->dev);
2290	pm_runtime_disable(host->dev);
2291	if (host->dbclk)
2292		clk_disable_unprepare(host->dbclk);
2293err1:
2294	mmc_free_host(mmc);
2295err_alloc:
2296	omap_hsmmc_gpio_free(pdata);
2297err:
2298	return ret;
2299}
2300
2301static int omap_hsmmc_remove(struct platform_device *pdev)
2302{
2303	struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2304
2305	pm_runtime_get_sync(host->dev);
2306	mmc_remove_host(host->mmc);
2307	if (host->use_reg)
2308		omap_hsmmc_reg_put(host);
2309	if (host->pdata->cleanup)
2310		host->pdata->cleanup(&pdev->dev);
2311
2312	if (host->tx_chan)
2313		dma_release_channel(host->tx_chan);
2314	if (host->rx_chan)
2315		dma_release_channel(host->rx_chan);
2316
2317	pm_runtime_put_sync(host->dev);
2318	pm_runtime_disable(host->dev);
2319	if (host->dbclk)
2320		clk_disable_unprepare(host->dbclk);
2321
2322	omap_hsmmc_gpio_free(host->pdata);
2323	mmc_free_host(host->mmc);
2324
2325	return 0;
2326}
2327
2328#ifdef CONFIG_PM
2329static int omap_hsmmc_prepare(struct device *dev)
2330{
2331	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2332
2333	if (host->pdata->suspend)
2334		return host->pdata->suspend(dev, host->slot_id);
2335
2336	return 0;
2337}
2338
2339static void omap_hsmmc_complete(struct device *dev)
2340{
2341	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2342
2343	if (host->pdata->resume)
2344		host->pdata->resume(dev, host->slot_id);
2345
2346}
2347
2348static int omap_hsmmc_suspend(struct device *dev)
2349{
2350	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2351
2352	if (!host)
2353		return 0;
2354
2355	pm_runtime_get_sync(host->dev);
2356
2357	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2358		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2359		OMAP_HSMMC_WRITE(host->base, IE, 0);
2360		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2361		OMAP_HSMMC_WRITE(host->base, HCTL,
2362				OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2363	}
2364
2365	/* do not wake up due to sdio irq */
2366	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2367	    !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2368		disable_irq(host->wake_irq);
2369
2370	if (host->dbclk)
2371		clk_disable_unprepare(host->dbclk);
2372
2373	pm_runtime_put_sync(host->dev);
2374	return 0;
2375}
2376
2377/* Routine to resume the MMC device */
2378static int omap_hsmmc_resume(struct device *dev)
2379{
2380	struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2381
2382	if (!host)
2383		return 0;
2384
2385	pm_runtime_get_sync(host->dev);
2386
2387	if (host->dbclk)
2388		clk_prepare_enable(host->dbclk);
2389
2390	if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2391		omap_hsmmc_conf_bus_power(host);
2392
2393	omap_hsmmc_protect_card(host);
2394
2395	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2396	    !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2397		enable_irq(host->wake_irq);
2398
2399	pm_runtime_mark_last_busy(host->dev);
2400	pm_runtime_put_autosuspend(host->dev);
2401	return 0;
2402}
2403
2404#else
2405#define omap_hsmmc_prepare	NULL
2406#define omap_hsmmc_complete	NULL
2407#define omap_hsmmc_suspend	NULL
2408#define omap_hsmmc_resume	NULL
2409#endif
2410
2411static int omap_hsmmc_runtime_suspend(struct device *dev)
2412{
2413	struct omap_hsmmc_host *host;
2414	unsigned long flags;
2415	int ret = 0;
2416
2417	host = platform_get_drvdata(to_platform_device(dev));
2418	omap_hsmmc_context_save(host);
2419	dev_dbg(dev, "disabled\n");
2420
2421	spin_lock_irqsave(&host->irq_lock, flags);
2422	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2423	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2424		/* disable sdio irq handling to prevent race */
2425		OMAP_HSMMC_WRITE(host->base, ISE, 0);
2426		OMAP_HSMMC_WRITE(host->base, IE, 0);
2427
2428		if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2429			/*
2430			 * dat1 line low, pending sdio irq
2431			 * race condition: possible irq handler running on
2432			 * multi-core, abort
2433			 */
2434			dev_dbg(dev, "pending sdio irq, abort suspend\n");
2435			OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2436			OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2437			OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2438			pm_runtime_mark_last_busy(dev);
2439			ret = -EBUSY;
2440			goto abort;
2441		}
2442
2443		pinctrl_pm_select_idle_state(dev);
2444
2445		WARN_ON(host->flags & HSMMC_WAKE_IRQ_ENABLED);
2446		enable_irq(host->wake_irq);
2447		host->flags |= HSMMC_WAKE_IRQ_ENABLED;
2448	} else {
2449		pinctrl_pm_select_idle_state(dev);
2450	}
2451
2452abort:
2453	spin_unlock_irqrestore(&host->irq_lock, flags);
2454	return ret;
2455}
2456
2457static int omap_hsmmc_runtime_resume(struct device *dev)
2458{
2459	struct omap_hsmmc_host *host;
2460	unsigned long flags;
2461
2462	host = platform_get_drvdata(to_platform_device(dev));
2463	omap_hsmmc_context_restore(host);
2464	dev_dbg(dev, "enabled\n");
2465
2466	spin_lock_irqsave(&host->irq_lock, flags);
2467	if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2468	    (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2469		/* sdio irq flag can't change while in runtime suspend */
2470		if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
2471			disable_irq_nosync(host->wake_irq);
2472			host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
2473		}
2474
2475		pinctrl_pm_select_default_state(host->dev);
2476
2477		/* irq lost, if pinmux incorrect */
2478		OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2479		OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2480		OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2481	} else {
2482		pinctrl_pm_select_default_state(host->dev);
2483	}
2484	spin_unlock_irqrestore(&host->irq_lock, flags);
2485	return 0;
2486}
2487
2488static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2489	.suspend	= omap_hsmmc_suspend,
2490	.resume		= omap_hsmmc_resume,
2491	.prepare	= omap_hsmmc_prepare,
2492	.complete	= omap_hsmmc_complete,
2493	.runtime_suspend = omap_hsmmc_runtime_suspend,
2494	.runtime_resume = omap_hsmmc_runtime_resume,
2495};
2496
2497static struct platform_driver omap_hsmmc_driver = {
2498	.probe		= omap_hsmmc_probe,
2499	.remove		= omap_hsmmc_remove,
2500	.driver		= {
2501		.name = DRIVER_NAME,
2502		.pm = &omap_hsmmc_dev_pm_ops,
2503		.of_match_table = of_match_ptr(omap_mmc_of_match),
2504	},
2505};
2506
2507module_platform_driver(omap_hsmmc_driver);
2508MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2509MODULE_LICENSE("GPL");
2510MODULE_ALIAS("platform:" DRIVER_NAME);
2511MODULE_AUTHOR("Texas Instruments Inc");
2512